|
| 1 | +from __future__ import annotations |
| 2 | + |
| 3 | +from dataclasses import dataclass |
| 4 | +from typing import TYPE_CHECKING, Any |
| 5 | + |
| 6 | +import torch |
| 7 | +from transformers import AutoConfig, AutoModel, AutoProcessor |
| 8 | + |
| 9 | +from daft import DataType |
| 10 | +from daft.ai.protocols import ImageEmbedder, ImageEmbedderDescriptor |
| 11 | +from daft.ai.typing import EmbeddingDimensions, Options |
| 12 | +from daft.ai.utils import get_device |
| 13 | +from daft.dependencies import pil_image |
| 14 | + |
| 15 | +if TYPE_CHECKING: |
| 16 | + from daft.ai.typing import Embedding, Image |
| 17 | + |
| 18 | + |
| 19 | +@dataclass |
| 20 | +class TransformersImageEmbedderDescriptor(ImageEmbedderDescriptor): |
| 21 | + model: str |
| 22 | + options: Options |
| 23 | + |
| 24 | + def get_provider(self) -> str: |
| 25 | + return "transformers" |
| 26 | + |
| 27 | + def get_model(self) -> str: |
| 28 | + return self.model |
| 29 | + |
| 30 | + def get_options(self) -> Options: |
| 31 | + return self.options |
| 32 | + |
| 33 | + def get_dimensions(self) -> EmbeddingDimensions: |
| 34 | + config = AutoConfig.from_pretrained(self.model, trust_remote_code=True) |
| 35 | + # For CLIP models, the image embedding dimension is typically in projection_dim or hidden_size. |
| 36 | + embedding_size = getattr(config, "projection_dim", getattr(config, "hidden_size", 512)) |
| 37 | + return EmbeddingDimensions(size=embedding_size, dtype=DataType.float32()) |
| 38 | + |
| 39 | + def instantiate(self) -> ImageEmbedder: |
| 40 | + return TransformersImageEmbedder(self.model, **self.options) |
| 41 | + |
| 42 | + |
| 43 | +class TransformersImageEmbedder(ImageEmbedder): |
| 44 | + model: Any |
| 45 | + options: Options |
| 46 | + |
| 47 | + def __init__(self, model_name_or_path: str, **options: Any): |
| 48 | + self.device = get_device() |
| 49 | + self.model = AutoModel.from_pretrained( |
| 50 | + model_name_or_path, |
| 51 | + trust_remote_code=True, |
| 52 | + use_safetensors=True, |
| 53 | + ).to(self.device) |
| 54 | + self.processor = AutoProcessor.from_pretrained(model_name_or_path, trust_remote_code=True, use_fast=True) |
| 55 | + self.options = options |
| 56 | + |
| 57 | + def embed_image(self, images: list[Image]) -> list[Embedding]: |
| 58 | + # TODO(desmond): There's potential for image decoding and processing on the GPU with greater |
| 59 | + # performance. Methods differ a little between different models, so let's do it later. |
| 60 | + pil_images = [pil_image.fromarray(image) for image in images] |
| 61 | + processed = self.processor(images=pil_images, return_tensors="pt") |
| 62 | + pixel_values = processed["pixel_values"].to(self.device) |
| 63 | + |
| 64 | + with torch.inference_mode(): |
| 65 | + embeddings = self.model.get_image_features(pixel_values) |
| 66 | + return embeddings.cpu().numpy().tolist() |
0 commit comments