|
| 1 | +--- |
| 2 | +layout: model |
| 3 | +title: Chinese Deberta Embeddings Cased model (from IDEA-CCNL) |
| 4 | +author: John Snow Labs |
| 5 | +name: deberta_embeddings_erlangshen_v2_chinese_sentencepiece |
| 6 | +date: 2023-06-26 |
| 7 | +tags: [open_source, deberta, deberta_embeddings, debertav2formaskedlm, zh, onnx] |
| 8 | +task: Embeddings |
| 9 | +language: zh |
| 10 | +edition: Spark NLP 5.0.0 |
| 11 | +spark_version: 3.0 |
| 12 | +supported: true |
| 13 | +engine: onnx |
| 14 | +annotator: DeBertaEmbeddings |
| 15 | +article_header: |
| 16 | + type: cover |
| 17 | +use_language_switcher: "Python-Scala-Java" |
| 18 | +--- |
| 19 | + |
| 20 | +## Description |
| 21 | + |
| 22 | +Pretrained DebertaV2ForMaskedLM model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `Erlangshen-DeBERTa-v2-186M-Chinese-SentencePiece` is a Chinese model originally trained by `IDEA-CCNL`. |
| 23 | + |
| 24 | +## Predicted Entities |
| 25 | + |
| 26 | + |
| 27 | + |
| 28 | +{:.btn-box} |
| 29 | +<button class="button button-orange" disabled>Live Demo</button> |
| 30 | +<button class="button button-orange" disabled>Open in Colab</button> |
| 31 | +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/deberta_embeddings_erlangshen_v2_chinese_sentencepiece_zh_5.0.0_3.0_1687781761029.zip){:.button.button-orange.button-orange-trans.arr.button-icon} |
| 32 | +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/deberta_embeddings_erlangshen_v2_chinese_sentencepiece_zh_5.0.0_3.0_1687781761029.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} |
| 33 | + |
| 34 | +## How to use |
| 35 | + |
| 36 | +<div class="tabs-box" markdown="1"> |
| 37 | +{% include programmingLanguageSelectScalaPythonNLU.html %} |
| 38 | + |
| 39 | +```python |
| 40 | +documentAssembler = DocumentAssembler() \ |
| 41 | + .setInputCol("text") \ |
| 42 | + .setOutputCol("document") |
| 43 | + |
| 44 | +tokenizer = Tokenizer() \ |
| 45 | + .setInputCols("document") \ |
| 46 | + .setOutputCol("token") |
| 47 | + |
| 48 | +embeddings = DeBertaEmbeddings.pretrained("deberta_embeddings_erlangshen_v2_chinese_sentencepiece","zh") \ |
| 49 | + .setInputCols(["document", "token"]) \ |
| 50 | + .setOutputCol("embeddings") \ |
| 51 | + .setCaseSensitive(True) |
| 52 | + |
| 53 | +pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings]) |
| 54 | + |
| 55 | +data = spark.createDataFrame([["I love Spark-NLP"]]).toDF("text") |
| 56 | + |
| 57 | +result = pipeline.fit(data).transform(data) |
| 58 | +``` |
| 59 | +```scala |
| 60 | +val documentAssembler = new DocumentAssembler() |
| 61 | + .setInputCol("text") |
| 62 | + .setOutputCol("document") |
| 63 | + |
| 64 | +val tokenizer = new Tokenizer() |
| 65 | + .setInputCols("document") |
| 66 | + .setOutputCol("token") |
| 67 | + |
| 68 | +val embeddings = DeBertaEmbeddings.pretrained("deberta_embeddings_erlangshen_v2_chinese_sentencepiece","zh") |
| 69 | + .setInputCols(Array("document", "token")) |
| 70 | + .setOutputCol("embeddings") |
| 71 | + .setCaseSensitive(True) |
| 72 | + |
| 73 | +val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings)) |
| 74 | + |
| 75 | +val data = Seq("I love Spark-NLP").toDS.toDF("text") |
| 76 | + |
| 77 | +val result = pipeline.fit(data).transform(data) |
| 78 | +``` |
| 79 | +</div> |
| 80 | + |
| 81 | +{:.model-param} |
| 82 | + |
| 83 | +<div class="tabs-box" markdown="1"> |
| 84 | +{% include programmingLanguageSelectScalaPythonNLU.html %} |
| 85 | +```python |
| 86 | +documentAssembler = DocumentAssembler() \ |
| 87 | + .setInputCol("text") \ |
| 88 | + .setOutputCol("document") |
| 89 | + |
| 90 | +tokenizer = Tokenizer() \ |
| 91 | + .setInputCols("document") \ |
| 92 | + .setOutputCol("token") |
| 93 | + |
| 94 | +embeddings = DeBertaEmbeddings.pretrained("deberta_embeddings_erlangshen_v2_chinese_sentencepiece","zh") \ |
| 95 | + .setInputCols(["document", "token"]) \ |
| 96 | + .setOutputCol("embeddings") \ |
| 97 | + .setCaseSensitive(True) |
| 98 | + |
| 99 | +pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings]) |
| 100 | + |
| 101 | +data = spark.createDataFrame([["I love Spark-NLP"]]).toDF("text") |
| 102 | + |
| 103 | +result = pipeline.fit(data).transform(data) |
| 104 | +``` |
| 105 | +```scala |
| 106 | +val documentAssembler = new DocumentAssembler() |
| 107 | + .setInputCol("text") |
| 108 | + .setOutputCol("document") |
| 109 | + |
| 110 | +val tokenizer = new Tokenizer() |
| 111 | + .setInputCols("document") |
| 112 | + .setOutputCol("token") |
| 113 | + |
| 114 | +val embeddings = DeBertaEmbeddings.pretrained("deberta_embeddings_erlangshen_v2_chinese_sentencepiece","zh") |
| 115 | + .setInputCols(Array("document", "token")) |
| 116 | + .setOutputCol("embeddings") |
| 117 | + .setCaseSensitive(True) |
| 118 | + |
| 119 | +val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings)) |
| 120 | + |
| 121 | +val data = Seq("I love Spark-NLP").toDS.toDF("text") |
| 122 | + |
| 123 | +val result = pipeline.fit(data).transform(data) |
| 124 | +``` |
| 125 | +</div> |
| 126 | + |
| 127 | +{:.model-param} |
| 128 | +## Model Information |
| 129 | + |
| 130 | +{:.table-model} |
| 131 | +|---|---| |
| 132 | +|Model Name:|deberta_embeddings_erlangshen_v2_chinese_sentencepiece| |
| 133 | +|Compatibility:|Spark NLP 5.0.0+| |
| 134 | +|License:|Open Source| |
| 135 | +|Edition:|Official| |
| 136 | +|Input Labels:|[sentence, token]| |
| 137 | +|Output Labels:|[embeddings]| |
| 138 | +|Language:|zh| |
| 139 | +|Size:|443.8 MB| |
| 140 | +|Case sensitive:|false| |
0 commit comments