|
| 1 | +# !pip install torchvision pydantic |
| 2 | +import base64 |
| 3 | +import io |
| 4 | + |
| 5 | +import torch |
| 6 | +import torchvision |
| 7 | +from PIL import Image |
| 8 | +from pydantic import BaseModel |
| 9 | + |
| 10 | +import lightning as L |
| 11 | +from lightning.app.components.serve import Image as InputImage |
| 12 | +from lightning.app.components.serve import PythonServer |
| 13 | + |
| 14 | + |
| 15 | +class PyTorchServer(PythonServer): |
| 16 | + def __init__(self): |
| 17 | + super().__init__( |
| 18 | + input_type=InputImage, |
| 19 | + output_type=OutputData, |
| 20 | + cloud_compute=L.CloudCompute("gpu"), |
| 21 | + ) |
| 22 | + |
| 23 | + def setup(self): |
| 24 | + self._model = torchvision.models.resnet18(pretrained=True) |
| 25 | + self._device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
| 26 | + self._model.to(self._device) |
| 27 | + |
| 28 | + def predict(self, request): |
| 29 | + image = base64.b64decode(request.image.encode("utf-8")) |
| 30 | + image = Image.open(io.BytesIO(image)) |
| 31 | + transforms = torchvision.transforms.Compose( |
| 32 | + [ |
| 33 | + torchvision.transforms.Resize(224), |
| 34 | + torchvision.transforms.ToTensor(), |
| 35 | + torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
| 36 | + ] |
| 37 | + ) |
| 38 | + image = transforms(image) |
| 39 | + image = image.to(self._device) |
| 40 | + prediction = self._model(image.unsqueeze(0)) |
| 41 | + return {"prediction": prediction.argmax().item()} |
| 42 | + |
| 43 | + |
| 44 | +class OutputData(BaseModel): |
| 45 | + prediction: int |
| 46 | + |
| 47 | + |
| 48 | +app = L.LightningApp(PyTorchServer()) |
| 49 | + |
| 50 | + |
| 51 | +# TODO: name confusion LoadBalancer vs. AutoScaler |
| 52 | +# from lightning.app.components import LoadBalancer |
| 53 | +# component = LoadBalancer( |
| 54 | +# PyTorchServer, |
| 55 | +# num_replicas=4, |
| 56 | +# balance_function="predict", |
| 57 | +# auto_scale=False, |
| 58 | +# ) |
| 59 | +# app = L.LightningApp(component) |
0 commit comments