@@ -87,6 +87,7 @@ def tearDown(self):
87
87
88
88
@unittest .mock .patch ('autoPyTorch.pipeline.tabular_classification.TabularClassificationPipeline' )
89
89
def test_holdout (self , pipeline_mock ):
90
+ pipeline_mock .fit_dictionary = {'budget_type' : 'epochs' , 'epochs' : 50 }
90
91
# Binary iris, contains 69 train samples, 31 test samples
91
92
D = get_binary_classification_datamanager ()
92
93
pipeline_mock .predict_proba .side_effect = \
@@ -99,7 +100,8 @@ def test_holdout(self, pipeline_mock):
99
100
backend_api .load_datamanager = lambda : D
100
101
queue_ = multiprocessing .Queue ()
101
102
102
- evaluator = TrainEvaluator (backend_api , queue_ , configuration = configuration , metric = accuracy , budget = 0 )
103
+ evaluator = TrainEvaluator (backend_api , queue_ , configuration = configuration , metric = accuracy , budget = 0 ,
104
+ pipeline_config = {'budget_type' : 'epochs' , 'epochs' : 50 })
103
105
evaluator .file_output = unittest .mock .Mock (spec = evaluator .file_output )
104
106
evaluator .file_output .return_value = (None , {})
105
107
@@ -137,7 +139,8 @@ def test_cv(self, pipeline_mock):
137
139
backend_api .load_datamanager = lambda : D
138
140
queue_ = multiprocessing .Queue ()
139
141
140
- evaluator = TrainEvaluator (backend_api , queue_ , configuration = configuration , metric = accuracy , budget = 0 )
142
+ evaluator = TrainEvaluator (backend_api , queue_ , configuration = configuration , metric = accuracy , budget = 0 ,
143
+ pipeline_config = {'budget_type' : 'epochs' , 'epochs' : 50 })
141
144
evaluator .file_output = unittest .mock .Mock (spec = evaluator .file_output )
142
145
evaluator .file_output .return_value = (None , {})
143
146
@@ -241,7 +244,8 @@ def test_predict_proba_binary_classification(self, mock):
241
244
configuration = unittest .mock .Mock (spec = Configuration )
242
245
queue_ = multiprocessing .Queue ()
243
246
244
- evaluator = TrainEvaluator (self .backend_mock , queue_ , configuration = configuration , metric = accuracy , budget = 0 )
247
+ evaluator = TrainEvaluator (self .backend_mock , queue_ , configuration = configuration , metric = accuracy , budget = 0 ,
248
+ pipeline_config = {'budget_type' : 'epochs' , 'epochs' : 50 })
245
249
246
250
evaluator .fit_predict_and_loss ()
247
251
Y_optimization_pred = self .backend_mock .save_numrun_to_dir .call_args_list [0 ][1 ][
0 commit comments