@@ -36,7 +36,7 @@ with AutoPyTorch
36
36
37
37
.. code-block :: none
38
38
39
- <smac.runhistory.runhistory.RunHistory object at 0x7fa1d40e1f70 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
39
+ <smac.runhistory.runhistory.RunHistory object at 0x7fb8b3596490 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
40
40
data_loader:batch_size, Value: 32
41
41
encoder:__choice__, Value: 'OneHotEncoder'
42
42
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -53,6 +53,16 @@ with AutoPyTorch
53
53
network_backbone:ShapedMLPBackbone:output_dim, Value: 200
54
54
network_backbone:ShapedMLPBackbone:use_dropout, Value: False
55
55
network_backbone:__choice__, Value: 'ShapedMLPBackbone'
56
+ network_embedding:LearnedEntityEmbedding:dimension_reduction_0, Value: 0.5
57
+ network_embedding:LearnedEntityEmbedding:dimension_reduction_1, Value: 0.5
58
+ network_embedding:LearnedEntityEmbedding:dimension_reduction_2, Value: 0.5
59
+ network_embedding:LearnedEntityEmbedding:dimension_reduction_3, Value: 0.5
60
+ network_embedding:LearnedEntityEmbedding:dimension_reduction_4, Value: 0.5
61
+ network_embedding:LearnedEntityEmbedding:dimension_reduction_5, Value: 0.5
62
+ network_embedding:LearnedEntityEmbedding:dimension_reduction_6, Value: 0.5
63
+ network_embedding:LearnedEntityEmbedding:dimension_reduction_7, Value: 0.5
64
+ network_embedding:LearnedEntityEmbedding:min_unique_values_for_embedding, Value: 5
65
+ network_embedding:__choice__, Value: 'LearnedEntityEmbedding'
56
66
network_head:__choice__, Value: 'fully_connected'
57
67
network_head:fully_connected:activation, Value: 'relu'
58
68
network_head:fully_connected:num_layers, Value: 2
@@ -67,7 +77,7 @@ with AutoPyTorch
67
77
scaler:__choice__, Value: 'StandardScaler'
68
78
trainer:StandardTrainer:weighted_loss, Value: True
69
79
trainer:__choice__, Value: 'StandardTrainer'
70
- , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0025670528411865234 , budget=0), TrajEntry(train_perf=0.15204678362573099 , incumbent_id=1, incumbent=Configuration:
80
+ , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0018329620361328125 , budget=0), TrajEntry(train_perf=0.1871345029239766 , incumbent_id=1, incumbent=Configuration:
71
81
data_loader:batch_size, Value: 32
72
82
encoder:__choice__, Value: 'OneHotEncoder'
73
83
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -84,6 +94,16 @@ with AutoPyTorch
84
94
network_backbone:ShapedMLPBackbone:output_dim, Value: 200
85
95
network_backbone:ShapedMLPBackbone:use_dropout, Value: False
86
96
network_backbone:__choice__, Value: 'ShapedMLPBackbone'
97
+ network_embedding:LearnedEntityEmbedding:dimension_reduction_0, Value: 0.5
98
+ network_embedding:LearnedEntityEmbedding:dimension_reduction_1, Value: 0.5
99
+ network_embedding:LearnedEntityEmbedding:dimension_reduction_2, Value: 0.5
100
+ network_embedding:LearnedEntityEmbedding:dimension_reduction_3, Value: 0.5
101
+ network_embedding:LearnedEntityEmbedding:dimension_reduction_4, Value: 0.5
102
+ network_embedding:LearnedEntityEmbedding:dimension_reduction_5, Value: 0.5
103
+ network_embedding:LearnedEntityEmbedding:dimension_reduction_6, Value: 0.5
104
+ network_embedding:LearnedEntityEmbedding:dimension_reduction_7, Value: 0.5
105
+ network_embedding:LearnedEntityEmbedding:min_unique_values_for_embedding, Value: 5
106
+ network_embedding:__choice__, Value: 'LearnedEntityEmbedding'
87
107
network_head:__choice__, Value: 'fully_connected'
88
108
network_head:fully_connected:activation, Value: 'relu'
89
109
network_head:fully_connected:num_layers, Value: 2
@@ -98,23 +118,123 @@ with AutoPyTorch
98
118
scaler:__choice__, Value: 'StandardScaler'
99
119
trainer:StandardTrainer:weighted_loss, Value: True
100
120
trainer:__choice__, Value: 'StandardTrainer'
101
- , ta_runs=1, ta_time_used=4.820392370223999, wallclock_time=6.193603515625, budget=5.555555555555555)]
102
- {'accuracy': 0.8670520231213873}
103
- | | Preprocessing | Estimator | Weight |
104
- |---:|:------------------------------------------------------------------|:---------------------------------------------------|---------:|
105
- | 0 | None | ExtraTreesClassifier | 0.2 |
106
- | 1 | None | RFClassifier | 0.16 |
107
- | 2 | SimpleImputer,NoEncoder,StandardScaler,KitchenSink | ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.14 |
108
- | 3 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.12 |
109
- | 4 | None | KNNClassifier | 0.1 |
110
- | 5 | SimpleImputer,OrdinalEncoder,Normalizer,PowerTransformer | MLPBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
111
- | 6 | SimpleImputer,OneHotEncoder,MinMaxScaler,PolynomialFeatures | ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
112
- | 7 | None | LGBMClassifier | 0.04 |
113
- | 8 | None | SVC | 0.04 |
114
- | 9 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
115
- | 10 | SimpleImputer,OneHotEncoder,StandardScaler,PolynomialFeatures | ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
116
- | 11 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
117
- | 12 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
121
+ , ta_runs=1, ta_time_used=4.976077318191528, wallclock_time=6.364607572555542, budget=5.555555555555555), TrajEntry(train_perf=0.16959064327485385, incumbent_id=2, incumbent=Configuration:
122
+ data_loader:batch_size, Value: 224
123
+ encoder:__choice__, Value: 'OneHotEncoder'
124
+ feature_preprocessor:KernelPCA:gamma, Value: 0.6217858094449208
125
+ feature_preprocessor:KernelPCA:kernel, Value: 'rbf'
126
+ feature_preprocessor:KernelPCA:n_components, Value: 4
127
+ feature_preprocessor:__choice__, Value: 'KernelPCA'
128
+ imputer:categorical_strategy, Value: 'constant_!missing!'
129
+ imputer:numerical_strategy, Value: 'most_frequent'
130
+ lr_scheduler:CosineAnnealingWarmRestarts:T_0, Value: 10
131
+ lr_scheduler:CosineAnnealingWarmRestarts:T_mult, Value: 1.9483254217071713
132
+ lr_scheduler:__choice__, Value: 'CosineAnnealingWarmRestarts'
133
+ network_backbone:ShapedMLPBackbone:activation, Value: 'relu'
134
+ network_backbone:ShapedMLPBackbone:max_units, Value: 948
135
+ network_backbone:ShapedMLPBackbone:mlp_shape, Value: 'long_funnel'
136
+ network_backbone:ShapedMLPBackbone:num_groups, Value: 13
137
+ network_backbone:ShapedMLPBackbone:output_dim, Value: 761
138
+ network_backbone:ShapedMLPBackbone:use_dropout, Value: False
139
+ network_backbone:__choice__, Value: 'ShapedMLPBackbone'
140
+ network_embedding:__choice__, Value: 'NoEmbedding'
141
+ network_head:__choice__, Value: 'fully_connected'
142
+ network_head:fully_connected:num_layers, Value: 1
143
+ network_init:KaimingInit:bias_strategy, Value: 'Zero'
144
+ network_init:__choice__, Value: 'KaimingInit'
145
+ optimizer:RMSpropOptimizer:alpha, Value: 0.19641480830908647
146
+ optimizer:RMSpropOptimizer:lr, Value: 5.575047339285285e-05
147
+ optimizer:RMSpropOptimizer:momentum, Value: 0.9188318520804722
148
+ optimizer:RMSpropOptimizer:weight_decay, Value: 0.03663295762981204
149
+ optimizer:__choice__, Value: 'RMSpropOptimizer'
150
+ scaler:__choice__, Value: 'StandardScaler'
151
+ trainer:MixUpTrainer:alpha, Value: 0.7490557199071863
152
+ trainer:MixUpTrainer:weighted_loss, Value: False
153
+ trainer:__choice__, Value: 'MixUpTrainer'
154
+ , ta_runs=4, ta_time_used=49.824679136276245, wallclock_time=57.541908502578735, budget=5.555555555555555), TrajEntry(train_perf=0.1578947368421053, incumbent_id=3, incumbent=Configuration:
155
+ data_loader:batch_size, Value: 32
156
+ encoder:__choice__, Value: 'OneHotEncoder'
157
+ feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
158
+ imputer:categorical_strategy, Value: 'most_frequent'
159
+ imputer:numerical_strategy, Value: 'mean'
160
+ lr_scheduler:ReduceLROnPlateau:factor, Value: 0.1
161
+ lr_scheduler:ReduceLROnPlateau:mode, Value: 'min'
162
+ lr_scheduler:ReduceLROnPlateau:patience, Value: 10
163
+ lr_scheduler:__choice__, Value: 'ReduceLROnPlateau'
164
+ network_backbone:ShapedMLPBackbone:activation, Value: 'relu'
165
+ network_backbone:ShapedMLPBackbone:max_units, Value: 200
166
+ network_backbone:ShapedMLPBackbone:mlp_shape, Value: 'funnel'
167
+ network_backbone:ShapedMLPBackbone:num_groups, Value: 5
168
+ network_backbone:ShapedMLPBackbone:output_dim, Value: 200
169
+ network_backbone:ShapedMLPBackbone:use_dropout, Value: False
170
+ network_backbone:__choice__, Value: 'ShapedMLPBackbone'
171
+ network_embedding:LearnedEntityEmbedding:dimension_reduction_0, Value: 0.5
172
+ network_embedding:LearnedEntityEmbedding:dimension_reduction_1, Value: 0.5
173
+ network_embedding:LearnedEntityEmbedding:dimension_reduction_2, Value: 0.5
174
+ network_embedding:LearnedEntityEmbedding:dimension_reduction_3, Value: 0.5
175
+ network_embedding:LearnedEntityEmbedding:dimension_reduction_4, Value: 0.5
176
+ network_embedding:LearnedEntityEmbedding:dimension_reduction_5, Value: 0.5
177
+ network_embedding:LearnedEntityEmbedding:dimension_reduction_6, Value: 0.5
178
+ network_embedding:LearnedEntityEmbedding:dimension_reduction_7, Value: 0.5
179
+ network_embedding:LearnedEntityEmbedding:min_unique_values_for_embedding, Value: 5
180
+ network_embedding:__choice__, Value: 'LearnedEntityEmbedding'
181
+ network_head:__choice__, Value: 'fully_connected'
182
+ network_head:fully_connected:activation, Value: 'relu'
183
+ network_head:fully_connected:num_layers, Value: 2
184
+ network_head:fully_connected:units_layer_1, Value: 128
185
+ network_init:XavierInit:bias_strategy, Value: 'Normal'
186
+ network_init:__choice__, Value: 'XavierInit'
187
+ optimizer:AdamOptimizer:beta1, Value: 0.9
188
+ optimizer:AdamOptimizer:beta2, Value: 0.9
189
+ optimizer:AdamOptimizer:lr, Value: 0.01
190
+ optimizer:AdamOptimizer:weight_decay, Value: 0.0
191
+ optimizer:__choice__, Value: 'AdamOptimizer'
192
+ scaler:__choice__, Value: 'StandardScaler'
193
+ trainer:StandardTrainer:weighted_loss, Value: True
194
+ trainer:__choice__, Value: 'StandardTrainer'
195
+ , ta_runs=11, ta_time_used=115.39660000801086, wallclock_time=140.8079354763031, budget=16.666666666666664), TrajEntry(train_perf=0.1578947368421053, incumbent_id=4, incumbent=Configuration:
196
+ data_loader:batch_size, Value: 295
197
+ encoder:__choice__, Value: 'OneHotEncoder'
198
+ feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
199
+ imputer:categorical_strategy, Value: 'constant_!missing!'
200
+ imputer:numerical_strategy, Value: 'median'
201
+ lr_scheduler:ReduceLROnPlateau:factor, Value: 0.7683488018951772
202
+ lr_scheduler:ReduceLROnPlateau:mode, Value: 'min'
203
+ lr_scheduler:ReduceLROnPlateau:patience, Value: 7
204
+ lr_scheduler:__choice__, Value: 'ReduceLROnPlateau'
205
+ network_backbone:ShapedMLPBackbone:activation, Value: 'tanh'
206
+ network_backbone:ShapedMLPBackbone:max_units, Value: 316
207
+ network_backbone:ShapedMLPBackbone:mlp_shape, Value: 'long_funnel'
208
+ network_backbone:ShapedMLPBackbone:num_groups, Value: 6
209
+ network_backbone:ShapedMLPBackbone:output_dim, Value: 425
210
+ network_backbone:ShapedMLPBackbone:use_dropout, Value: False
211
+ network_backbone:__choice__, Value: 'ShapedMLPBackbone'
212
+ network_embedding:__choice__, Value: 'NoEmbedding'
213
+ network_head:__choice__, Value: 'fully_connected'
214
+ network_head:fully_connected:activation, Value: 'relu'
215
+ network_head:fully_connected:num_layers, Value: 2
216
+ network_head:fully_connected:units_layer_1, Value: 424
217
+ network_init:OrthogonalInit:bias_strategy, Value: 'Zero'
218
+ network_init:__choice__, Value: 'OrthogonalInit'
219
+ optimizer:RMSpropOptimizer:alpha, Value: 0.6699215268945383
220
+ optimizer:RMSpropOptimizer:lr, Value: 0.0009911973694107326
221
+ optimizer:RMSpropOptimizer:momentum, Value: 0.11786464509318967
222
+ optimizer:RMSpropOptimizer:weight_decay, Value: 0.04607537154099883
223
+ optimizer:__choice__, Value: 'RMSpropOptimizer'
224
+ scaler:Normalizer:norm, Value: 'max'
225
+ scaler:__choice__, Value: 'Normalizer'
226
+ trainer:StandardTrainer:weighted_loss, Value: False
227
+ trainer:__choice__, Value: 'StandardTrainer'
228
+ , ta_runs=20, ta_time_used=267.25257754325867, wallclock_time=329.0171344280243, budget=50.0)]
229
+ {'accuracy': 0.8554913294797688}
230
+ | | Preprocessing | Estimator | Weight |
231
+ |---:|:------------------------------------------------------------|:-------------------------------------------------------------------|---------:|
232
+ | 0 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.6 |
233
+ | 1 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.3 |
234
+ | 2 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
235
+ | 3 | SimpleImputer,NoEncoder,MinMaxScaler,TruncSVD | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
236
+ | 4 | SimpleImputer,OneHotEncoder,NoScaler,NoFeaturePreprocessing | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
237
+ | 5 | None | ExtraTreesClassifier | 0.02 |
118
238
119
239
120
240
@@ -206,7 +326,7 @@ with AutoPyTorch
206
326
207
327
.. rst-class :: sphx-glr-timing
208
328
209
- **Total running time of the script: ** ( 9 minutes 9.851 seconds)
329
+ **Total running time of the script: ** ( 9 minutes 15.502 seconds)
210
330
211
331
212
332
.. _sphx_glr_download_examples_example_tabular_classification.py :
0 commit comments