@@ -36,7 +36,7 @@ with AutoPyTorch
36
36
37
37
.. code-block :: none
38
38
39
- <smac.runhistory.runhistory.RunHistory object at 0x7ff7fbf2b190 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
39
+ <smac.runhistory.runhistory.RunHistory object at 0x7f983433d160 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
40
40
data_loader:batch_size, Value: 32
41
41
encoder:__choice__, Value: 'OneHotEncoder'
42
42
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -77,7 +77,7 @@ with AutoPyTorch
77
77
scaler:__choice__, Value: 'StandardScaler'
78
78
trainer:StandardTrainer:weighted_loss, Value: True
79
79
trainer:__choice__, Value: 'StandardTrainer'
80
- , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0019752979278564453 , budget=0), TrajEntry(train_perf=0.216374269005848 , incumbent_id=1, incumbent=Configuration:
80
+ , ta_runs=0, ta_time_used=0.0, wallclock_time=0.00208282470703125 , budget=0), TrajEntry(train_perf=0.16959064327485385 , incumbent_id=1, incumbent=Configuration:
81
81
data_loader:batch_size, Value: 32
82
82
encoder:__choice__, Value: 'OneHotEncoder'
83
83
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -118,40 +118,7 @@ with AutoPyTorch
118
118
scaler:__choice__, Value: 'StandardScaler'
119
119
trainer:StandardTrainer:weighted_loss, Value: True
120
120
trainer:__choice__, Value: 'StandardTrainer'
121
- , ta_runs=1, ta_time_used=5.269052505493164, wallclock_time=6.652451276779175, budget=5.555555555555555), TrajEntry(train_perf=0.21052631578947367, incumbent_id=2, incumbent=Configuration:
122
- data_loader:batch_size, Value: 472
123
- encoder:__choice__, Value: 'NoEncoder'
124
- feature_preprocessor:Nystroem:gamma, Value: 0.07411722362589628
125
- feature_preprocessor:Nystroem:kernel, Value: 'rbf'
126
- feature_preprocessor:Nystroem:n_components, Value: 5
127
- feature_preprocessor:__choice__, Value: 'Nystroem'
128
- imputer:categorical_strategy, Value: 'constant_!missing!'
129
- imputer:numerical_strategy, Value: 'constant_zero'
130
- lr_scheduler:__choice__, Value: 'NoScheduler'
131
- network_backbone:ShapedMLPBackbone:activation, Value: 'tanh'
132
- network_backbone:ShapedMLPBackbone:max_units, Value: 766
133
- network_backbone:ShapedMLPBackbone:mlp_shape, Value: 'diamond'
134
- network_backbone:ShapedMLPBackbone:num_groups, Value: 9
135
- network_backbone:ShapedMLPBackbone:output_dim, Value: 243
136
- network_backbone:ShapedMLPBackbone:use_dropout, Value: False
137
- network_backbone:__choice__, Value: 'ShapedMLPBackbone'
138
- network_embedding:__choice__, Value: 'NoEmbedding'
139
- network_head:__choice__, Value: 'fully_connected'
140
- network_head:fully_connected:activation, Value: 'tanh'
141
- network_head:fully_connected:num_layers, Value: 3
142
- network_head:fully_connected:units_layer_1, Value: 323
143
- network_head:fully_connected:units_layer_2, Value: 332
144
- network_init:KaimingInit:bias_strategy, Value: 'Normal'
145
- network_init:__choice__, Value: 'KaimingInit'
146
- optimizer:SGDOptimizer:lr, Value: 0.0024087824203718427
147
- optimizer:SGDOptimizer:momentum, Value: 0.418322885741585
148
- optimizer:SGDOptimizer:weight_decay, Value: 0.015250671878609713
149
- optimizer:__choice__, Value: 'SGDOptimizer'
150
- scaler:__choice__, Value: 'NoScaler'
151
- trainer:MixUpTrainer:alpha, Value: 0.4043218849947128
152
- trainer:MixUpTrainer:weighted_loss, Value: True
153
- trainer:__choice__, Value: 'MixUpTrainer'
154
- , ta_runs=3, ta_time_used=40.172093629837036, wallclock_time=46.57782244682312, budget=5.555555555555555), TrajEntry(train_perf=0.17543859649122806, incumbent_id=3, incumbent=Configuration:
121
+ , ta_runs=1, ta_time_used=4.665428161621094, wallclock_time=6.140820026397705, budget=5.555555555555555), TrajEntry(train_perf=0.14619883040935677, incumbent_id=2, incumbent=Configuration:
155
122
data_loader:batch_size, Value: 224
156
123
encoder:__choice__, Value: 'OneHotEncoder'
157
124
feature_preprocessor:KernelPCA:gamma, Value: 0.6217858094449208
@@ -184,26 +151,19 @@ with AutoPyTorch
184
151
trainer:MixUpTrainer:alpha, Value: 0.7490557199071863
185
152
trainer:MixUpTrainer:weighted_loss, Value: False
186
153
trainer:__choice__, Value: 'MixUpTrainer'
187
- , ta_runs=4 , ta_time_used=48.74088931083679 , wallclock_time=56.56371068954468 , budget=5.555555555555555 )]
188
- {'accuracy': 0.861271676300578 }
154
+ , ta_runs=12 , ta_time_used=105.31449437141418 , wallclock_time=135.89934992790222 , budget=16.666666666666664 )]
155
+ {'accuracy': 0.884393063583815 }
189
156
| | Preprocessing | Estimator | Weight |
190
157
|---:|:------------------------------------------------------------------|:-------------------------------------------------------------------|---------:|
191
- | 0 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.14 |
192
- | 1 | None | ExtraTreesClassifier | 0.12 |
193
- | 2 | None | KNNClassifier | 0.12 |
194
- | 3 | SimpleImputer,OneHotEncoder,Normalizer,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
195
- | 4 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
196
- | 5 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
197
- | 6 | SimpleImputer,OneHotEncoder,NoScaler,TruncSVD | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
198
- | 7 | SimpleImputer,NoEncoder,NoScaler,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
199
- | 8 | SimpleImputer,OneHotEncoder,MinMaxScaler,PolynomialFeatures | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
200
- | 9 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
201
- | 10 | SimpleImputer,NoEncoder,NoScaler,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
202
- | 11 | None | LGBMClassifier | 0.02 |
203
- | 12 | None | RFClassifier | 0.02 |
204
- | 13 | None | SVC | 0.02 |
205
- | 14 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
206
- | 15 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
158
+ | 0 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.42 |
159
+ | 1 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.14 |
160
+ | 2 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.14 |
161
+ | 3 | None | KNNClassifier | 0.1 |
162
+ | 4 | None | RFClassifier | 0.08 |
163
+ | 5 | SimpleImputer,OneHotEncoder,Normalizer,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
164
+ | 6 | None | ExtraTreesClassifier | 0.04 |
165
+ | 7 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
166
+ | 8 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
207
167
208
168
209
169
@@ -295,7 +255,7 @@ with AutoPyTorch
295
255
296
256
.. rst-class :: sphx-glr-timing
297
257
298
- **Total running time of the script: ** ( 9 minutes 22.257 seconds)
258
+ **Total running time of the script: ** ( 9 minutes 10.157 seconds)
299
259
300
260
301
261
.. _sphx_glr_download_examples_example_tabular_classification.py :
0 commit comments