@@ -133,7 +133,7 @@ Search for an ensemble of machine learning algorithms
133
133
.. code-block :: none
134
134
135
135
136
- <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f23f4a97fa0 >
136
+ <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f7f1c3e3340 >
137
137
138
138
139
139
@@ -162,7 +162,7 @@ Print the final ensemble performance
162
162
163
163
.. code-block :: none
164
164
165
- <smac.runhistory.runhistory.RunHistory object at 0x7f23f4a97a30 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
165
+ <smac.runhistory.runhistory.RunHistory object at 0x7f7f1c3e3d30 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
166
166
data_loader:batch_size, Value: 64
167
167
encoder:__choice__, Value: 'OneHotEncoder'
168
168
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -194,7 +194,7 @@ Print the final ensemble performance
194
194
scaler:__choice__, Value: 'StandardScaler'
195
195
trainer:StandardTrainer:weighted_loss, Value: True
196
196
trainer:__choice__, Value: 'StandardTrainer'
197
- , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0012044906616210938 , budget=0), TrajEntry(train_perf=0.16374269005847952, incumbent_id=1, incumbent=Configuration:
197
+ , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0012297630310058594 , budget=0), TrajEntry(train_perf=0.16374269005847952, incumbent_id=1, incumbent=Configuration:
198
198
data_loader:batch_size, Value: 64
199
199
encoder:__choice__, Value: 'OneHotEncoder'
200
200
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -226,29 +226,26 @@ Print the final ensemble performance
226
226
scaler:__choice__, Value: 'StandardScaler'
227
227
trainer:StandardTrainer:weighted_loss, Value: True
228
228
trainer:__choice__, Value: 'StandardTrainer'
229
- , ta_runs=1, ta_time_used=1.9000828266143799 , wallclock_time=3.1139419078826904 , budget=5.555555555555555)]
230
- {'accuracy': 0.8323699421965318 }
229
+ , ta_runs=1, ta_time_used=1.8366239070892334 , wallclock_time=3.0440237522125244 , budget=5.555555555555555)]
230
+ {'accuracy': 0.861271676300578 }
231
231
| | Preprocessing | Estimator | Weight |
232
232
|---:|:------------------------------------------------------------------|:-------------------------------------------------------------------|---------:|
233
- | 0 | SimpleImputer,NoEncoder,NoScaler,KernelPCA | no embedding,ResNetBackbone ,FullyConnectedHead,nn.Sequential | 0.26 |
234
- | 1 | None | RFLearner | 0.12 |
233
+ | 0 | SimpleImputer,NoEncoder,MinMaxScaler,Nystroem | no embedding,ShapedMLPBackbone ,FullyConnectedHead,nn.Sequential | 0.52 |
234
+ | 1 | SimpleImputer,NoEncoder,NoScaler,KernelPCA | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.14 |
235
235
| 2 | SimpleImputer,OneHotEncoder,MinMaxScaler,KernelPCA | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
236
- | 3 | SimpleImputer,OneHotEncoder,MinMaxScaler,PolynomialFeatures | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
237
- | 4 | None | CBLearner | 0.1 |
238
- | 5 | SimpleImputer,OneHotEncoder,MinMaxScaler,KernelPCA | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
239
- | 6 | SimpleImputer,OneHotEncoder,NoScaler,TruncSVD | embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
240
- | 7 | SimpleImputer,OneHotEncoder,NoScaler,PowerTransformer | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
241
- | 8 | None | LGBMLearner | 0.04 |
242
- | 9 | None | ETLearner | 0.04 |
243
- | 10 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
236
+ | 3 | None | CBLearner | 0.08 |
237
+ | 4 | None | RFLearner | 0.08 |
238
+ | 5 | SimpleImputer,OneHotEncoder,MinMaxScaler,KernelPCA | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
239
+ | 6 | SimpleImputer,OneHotEncoder,NoScaler,TruncSVD | embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
240
+ | 7 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
244
241
245
242
246
243
247
244
248
245
249
246
.. rst-class :: sphx-glr-timing
250
247
251
- **Total running time of the script: ** ( 5 minutes 24.604 seconds)
248
+ **Total running time of the script: ** ( 5 minutes 25.351 seconds)
252
249
253
250
254
251
.. _sphx_glr_download_examples_20_basics_example_tabular_classification.py :
0 commit comments