|
| 1 | +# SPDX-FileCopyrightText: 2022-present deepset GmbH <[email protected]> |
| 2 | +# |
| 3 | +# SPDX-License-Identifier: Apache-2.0 |
| 4 | + |
| 5 | +from unittest.mock import MagicMock, patch |
| 6 | + |
| 7 | +import numpy as np |
| 8 | +import pytest |
| 9 | + |
| 10 | +from haystack import AsyncPipeline, Document, Pipeline |
| 11 | +from haystack.components.builders import ChatPromptBuilder |
| 12 | +from haystack.components.builders.answer_builder import AnswerBuilder |
| 13 | +from haystack.components.embedders import SentenceTransformersTextEmbedder |
| 14 | +from haystack.components.generators.chat import OpenAIChatGenerator |
| 15 | +from haystack.components.joiners import DocumentJoiner |
| 16 | +from haystack.components.retrievers.in_memory import InMemoryBM25Retriever |
| 17 | +from haystack.components.writers import DocumentWriter |
| 18 | +from haystack.core.component import component |
| 19 | +from haystack.core.errors import PipelineRuntimeError |
| 20 | +from haystack.dataclasses import ChatMessage |
| 21 | +from haystack.document_stores.in_memory import InMemoryDocumentStore |
| 22 | +from haystack.document_stores.types import DuplicatePolicy |
| 23 | +from haystack.utils.auth import Secret |
| 24 | + |
| 25 | + |
| 26 | +def setup_document_store(): |
| 27 | + """Create and populate a document store with test documents.""" |
| 28 | + documents = [ |
| 29 | + Document(content="My name is Jean and I live in Paris.", embedding=[0.1, 0.3, 0.6]), |
| 30 | + Document(content="My name is Mark and I live in Berlin.", embedding=[0.2, 0.4, 0.7]), |
| 31 | + Document(content="My name is Giorgio and I live in Rome.", embedding=[0.3, 0.5, 0.8]), |
| 32 | + ] |
| 33 | + |
| 34 | + document_store = InMemoryDocumentStore() |
| 35 | + doc_writer = DocumentWriter(document_store=document_store, policy=DuplicatePolicy.SKIP) |
| 36 | + doc_writer.run(documents=documents) |
| 37 | + |
| 38 | + return document_store |
| 39 | + |
| 40 | + |
| 41 | +# Create a mock component that returns invalid output (int instead of documents list) |
| 42 | +@component |
| 43 | +class InvalidOutputEmbeddingRetriever: |
| 44 | + @component.output_types(documents=list[Document]) |
| 45 | + def run(self, query_embedding: list[float]): |
| 46 | + # Return an int instead of the expected documents list |
| 47 | + # This will cause the pipeline to crash when trying to pass it to the next component |
| 48 | + return 42 |
| 49 | + |
| 50 | + |
| 51 | +template = [ |
| 52 | + ChatMessage.from_system( |
| 53 | + "You are a helpful AI assistant. Answer the following question based on the given context information " |
| 54 | + "only. If the context is empty or just a '\n' answer with None, example: 'None'." |
| 55 | + ), |
| 56 | + ChatMessage.from_user( |
| 57 | + """ |
| 58 | + Context: |
| 59 | + {% for document in documents %} |
| 60 | + {{ document.content }} |
| 61 | + {% endfor %} |
| 62 | +
|
| 63 | + Question: {{question}} |
| 64 | + """ |
| 65 | + ), |
| 66 | +] |
| 67 | + |
| 68 | + |
| 69 | +class TestPipelineOutputsRaisedInException: |
| 70 | + @pytest.fixture |
| 71 | + def mock_sentence_transformers_text_embedder(self): |
| 72 | + with patch( |
| 73 | + "haystack.components.embedders.sentence_transformers_text_embedder._SentenceTransformersEmbeddingBackendFactory" |
| 74 | + ) as mock_text_embedder: |
| 75 | + mock_model = MagicMock() |
| 76 | + mock_text_embedder.return_value = mock_model |
| 77 | + |
| 78 | + def mock_encode( |
| 79 | + texts, batch_size=None, show_progress_bar=None, normalize_embeddings=None, precision=None, **kwargs |
| 80 | + ): # noqa E501 |
| 81 | + return [np.ones(384).tolist() for _ in texts] |
| 82 | + |
| 83 | + mock_model.encode = mock_encode |
| 84 | + embedder = SentenceTransformersTextEmbedder(model="mock-model", progress_bar=False) |
| 85 | + |
| 86 | + def mock_run(text): |
| 87 | + if not isinstance(text, str): |
| 88 | + raise TypeError( |
| 89 | + "SentenceTransformersTextEmbedder expects a string as input." |
| 90 | + "In case you want to embed a list of Documents, please use the " |
| 91 | + "SentenceTransformersDocumentEmbedder." |
| 92 | + ) |
| 93 | + |
| 94 | + embedding = np.ones(384).tolist() |
| 95 | + return {"embedding": embedding} |
| 96 | + |
| 97 | + embedder.run = mock_run |
| 98 | + embedder.warm_up() |
| 99 | + return embedder |
| 100 | + |
| 101 | + def test_hybrid_rag_pipeline_crash_on_embedding_retriever( |
| 102 | + self, mock_sentence_transformers_text_embedder, monkeypatch |
| 103 | + ): |
| 104 | + monkeypatch.setenv("OPENAI_API_KEY", "test-api-key") |
| 105 | + |
| 106 | + document_store = setup_document_store() |
| 107 | + text_embedder = mock_sentence_transformers_text_embedder |
| 108 | + invalid_embedding_retriever = InvalidOutputEmbeddingRetriever() |
| 109 | + bm25_retriever = InMemoryBM25Retriever(document_store) |
| 110 | + document_joiner = DocumentJoiner(join_mode="concatenate") |
| 111 | + |
| 112 | + pipeline = Pipeline() |
| 113 | + pipeline.add_component("text_embedder", text_embedder) |
| 114 | + pipeline.add_component("embedding_retriever", invalid_embedding_retriever) |
| 115 | + pipeline.add_component("bm25_retriever", bm25_retriever) |
| 116 | + pipeline.add_component("document_joiner", document_joiner) |
| 117 | + pipeline.add_component( |
| 118 | + "prompt_builder", ChatPromptBuilder(template=template, required_variables=["question", "documents"]) |
| 119 | + ) |
| 120 | + pipeline.add_component("llm", OpenAIChatGenerator(api_key=Secret.from_env_var("OPENAI_API_KEY"))) |
| 121 | + pipeline.add_component("answer_builder", AnswerBuilder()) |
| 122 | + |
| 123 | + pipeline.connect("text_embedder", "embedding_retriever") |
| 124 | + pipeline.connect("bm25_retriever", "document_joiner") |
| 125 | + pipeline.connect("embedding_retriever", "document_joiner") |
| 126 | + pipeline.connect("document_joiner.documents", "prompt_builder.documents") |
| 127 | + pipeline.connect("prompt_builder", "llm") |
| 128 | + pipeline.connect("llm.replies", "answer_builder.replies") |
| 129 | + |
| 130 | + question = "Where does Mark live?" |
| 131 | + test_data = { |
| 132 | + "text_embedder": {"text": question}, |
| 133 | + "bm25_retriever": {"query": question}, |
| 134 | + "prompt_builder": {"question": question}, |
| 135 | + "answer_builder": {"query": question}, |
| 136 | + } |
| 137 | + |
| 138 | + # run pipeline and expect it to crash due to invalid output type |
| 139 | + with pytest.raises(PipelineRuntimeError) as exc_info: |
| 140 | + pipeline.run( |
| 141 | + data=test_data, |
| 142 | + include_outputs_from={ |
| 143 | + "text_embedder", |
| 144 | + "embedding_retriever", |
| 145 | + "bm25_retriever", |
| 146 | + "document_joiner", |
| 147 | + "prompt_builder", |
| 148 | + "llm", |
| 149 | + "answer_builder", |
| 150 | + }, |
| 151 | + ) |
| 152 | + |
| 153 | + pipeline_outputs = exc_info.value.pipeline_outputs |
| 154 | + |
| 155 | + assert pipeline_outputs is not None, "Pipeline outputs should be captured in the exception" |
| 156 | + |
| 157 | + # verify that bm25_retriever and text_embedder ran successfully before the crash |
| 158 | + assert "bm25_retriever" in pipeline_outputs, "BM25 retriever output not captured" |
| 159 | + assert "documents" in pipeline_outputs["bm25_retriever"], "BM25 retriever should have produced documents" |
| 160 | + assert "text_embedder" in pipeline_outputs, "Text embedder output not captured" |
| 161 | + assert "embedding" in pipeline_outputs["text_embedder"], "Text embedder should have produced embeddings" |
| 162 | + |
| 163 | + # components after the crash point are not in the outputs |
| 164 | + assert "document_joiner" not in pipeline_outputs, "Document joiner should not have run due to crash" |
| 165 | + assert "prompt_builder" not in pipeline_outputs, "Prompt builder should not have run due to crash" |
| 166 | + assert "llm" not in pipeline_outputs, "LLM should not have run due to crash" |
| 167 | + assert "answer_builder" not in pipeline_outputs, "Answer builder should not have run due to crash" |
| 168 | + |
| 169 | + @pytest.mark.asyncio |
| 170 | + async def test_async_hybrid_rag_pipeline_crash_on_embedding_retriever( |
| 171 | + self, mock_sentence_transformers_text_embedder, monkeypatch |
| 172 | + ): |
| 173 | + monkeypatch.setenv("OPENAI_API_KEY", "test-api-key") |
| 174 | + |
| 175 | + document_store = setup_document_store() |
| 176 | + text_embedder = mock_sentence_transformers_text_embedder |
| 177 | + invalid_embedding_retriever = InvalidOutputEmbeddingRetriever() |
| 178 | + bm25_retriever = InMemoryBM25Retriever(document_store) |
| 179 | + document_joiner = DocumentJoiner(join_mode="concatenate") |
| 180 | + |
| 181 | + pipeline = AsyncPipeline() |
| 182 | + pipeline.add_component("text_embedder", text_embedder) |
| 183 | + pipeline.add_component("embedding_retriever", invalid_embedding_retriever) |
| 184 | + pipeline.add_component("bm25_retriever", bm25_retriever) |
| 185 | + pipeline.add_component("document_joiner", document_joiner) |
| 186 | + pipeline.add_component( |
| 187 | + "prompt_builder", ChatPromptBuilder(template=template, required_variables=["question", "documents"]) |
| 188 | + ) |
| 189 | + pipeline.add_component("llm", OpenAIChatGenerator(api_key=Secret.from_env_var("OPENAI_API_KEY"))) |
| 190 | + pipeline.add_component("answer_builder", AnswerBuilder()) |
| 191 | + |
| 192 | + pipeline.connect("text_embedder", "embedding_retriever") |
| 193 | + pipeline.connect("bm25_retriever", "document_joiner") |
| 194 | + pipeline.connect("embedding_retriever", "document_joiner") |
| 195 | + pipeline.connect("document_joiner.documents", "prompt_builder.documents") |
| 196 | + pipeline.connect("prompt_builder", "llm") |
| 197 | + pipeline.connect("llm.replies", "answer_builder.replies") |
| 198 | + |
| 199 | + question = "Where does Mark live?" |
| 200 | + test_data = { |
| 201 | + "text_embedder": {"text": question}, |
| 202 | + "bm25_retriever": {"query": question}, |
| 203 | + "prompt_builder": {"question": question}, |
| 204 | + "answer_builder": {"query": question}, |
| 205 | + } |
| 206 | + |
| 207 | + with pytest.raises(PipelineRuntimeError) as exc_info: |
| 208 | + await pipeline.run_async( |
| 209 | + data=test_data, |
| 210 | + include_outputs_from={ |
| 211 | + "text_embedder", |
| 212 | + "embedding_retriever", |
| 213 | + "bm25_retriever", |
| 214 | + "document_joiner", |
| 215 | + "prompt_builder", |
| 216 | + "llm", |
| 217 | + "answer_builder", |
| 218 | + }, |
| 219 | + ) |
| 220 | + |
| 221 | + pipeline_outputs = exc_info.value.pipeline_outputs |
| 222 | + assert pipeline_outputs is not None, "Pipeline outputs should be captured in the exception" |
| 223 | + |
| 224 | + # verify that bm25_retriever and text_embedder ran successfully before the crash |
| 225 | + assert "bm25_retriever" in pipeline_outputs, "BM25 retriever output not captured" |
| 226 | + assert "documents" in pipeline_outputs["bm25_retriever"], "BM25 retriever should have produced documents" |
| 227 | + assert "text_embedder" in pipeline_outputs, "Text embedder output not captured" |
| 228 | + assert "embedding" in pipeline_outputs["text_embedder"], "Text embedder should have produced embeddings" |
| 229 | + |
| 230 | + # components after the crash point are not in the outputs |
| 231 | + assert "document_joiner" not in pipeline_outputs, "Document joiner should not have run due to crash" |
| 232 | + assert "prompt_builder" not in pipeline_outputs, "Prompt builder should not have run due to crash" |
| 233 | + assert "llm" not in pipeline_outputs, "LLM should not have run due to crash" |
| 234 | + assert "answer_builder" not in pipeline_outputs, "Answer builder should not have run due to crash" |
0 commit comments