Skip to content

Commit c0ba0c8

Browse files
🤖 Auto-sync docs, metadata, and filepaths (#403)
Co-authored-by: colinleach <[email protected]>
1 parent a631185 commit c0ba0c8

File tree

22 files changed

+240
-172
lines changed

22 files changed

+240
-172
lines changed
Lines changed: 5 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,13 +1,12 @@
11
# Instructions
22

3-
Your task is to, given a target word and a set of candidate words, to find the subset of the candidates that are anagrams of the target.
3+
Given a target word and one or more candidate words, your task is to find the candidates that are anagrams of the target.
44

55
An anagram is a rearrangement of letters to form a new word: for example `"owns"` is an anagram of `"snow"`.
66
A word is _not_ its own anagram: for example, `"stop"` is not an anagram of `"stop"`.
77

8-
The target and candidates are words of one or more ASCII alphabetic characters (`A`-`Z` and `a`-`z`).
9-
Lowercase and uppercase characters are equivalent: for example, `"PoTS"` is an anagram of `"sTOp"`, but `StoP` is not an anagram of `sTOp`.
10-
The anagram set is the subset of the candidate set that are anagrams of the target (in any order).
11-
Words in the anagram set should have the same letter case as in the candidate set.
8+
The target word and candidate words are made up of one or more ASCII alphabetic characters (`A`-`Z` and `a`-`z`).
9+
Lowercase and uppercase characters are equivalent: for example, `"PoTS"` is an anagram of `"sTOp"`, but `"StoP"` is not an anagram of `"sTOp"`.
10+
The words you need to find should be taken from the candidate words, using the same letter case.
1211

13-
Given the target `"stone"` and candidates `"stone"`, `"tones"`, `"banana"`, `"tons"`, `"notes"`, `"Seton"`, the anagram set is `"tones"`, `"notes"`, `"Seton"`.
12+
Given the target `"stone"` and the candidate words `"stone"`, `"tones"`, `"banana"`, `"tons"`, `"notes"`, and `"Seton"`, the anagram words you need to find are `"tones"`, `"notes"`, and `"Seton"`.
Lines changed: 1 addition & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -1,29 +1,3 @@
11
# Instructions
22

3-
The Collatz Conjecture or 3x+1 problem can be summarized as follows:
4-
5-
Take any positive integer n.
6-
If n is even, divide n by 2 to get n / 2.
7-
If n is odd, multiply n by 3 and add 1 to get 3n + 1.
8-
Repeat the process indefinitely.
9-
The conjecture states that no matter which number you start with, you will always reach 1 eventually.
10-
11-
Given a number n, return the number of steps required to reach 1.
12-
13-
## Examples
14-
15-
Starting with n = 12, the steps would be as follows:
16-
17-
0. 12
18-
1. 6
19-
2. 3
20-
3. 10
21-
4. 5
22-
5. 16
23-
6. 8
24-
7. 4
25-
8. 2
26-
9. 1
27-
28-
Resulting in 9 steps.
29-
So for input n = 12, the return value would be 9.
3+
Given a positive integer, return the number of steps it takes to reach 1 according to the rules of the Collatz Conjecture.
Lines changed: 28 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,28 @@
1+
# Introduction
2+
3+
One evening, you stumbled upon an old notebook filled with cryptic scribbles, as though someone had been obsessively chasing an idea.
4+
On one page, a single question stood out: **Can every number find its way to 1?**
5+
It was tied to something called the **Collatz Conjecture**, a puzzle that has baffled thinkers for decades.
6+
7+
The rules were deceptively simple.
8+
Pick any positive integer.
9+
10+
- If it's even, divide it by 2.
11+
- If it's odd, multiply it by 3 and add 1.
12+
13+
Then, repeat these steps with the result, continuing indefinitely.
14+
15+
Curious, you picked number 12 to test and began the journey:
16+
17+
12 ➜ 6 ➜ 3 ➜ 10 ➜ 5 ➜ 16 ➜ 8 ➜ 4 ➜ 2 ➜ 1
18+
19+
Counting from the second number (6), it took 9 steps to reach 1, and each time the rules repeated, the number kept changing.
20+
At first, the sequence seemed unpredictable — jumping up, down, and all over.
21+
Yet, the conjecture claims that no matter the starting number, we'll always end at 1.
22+
23+
It was fascinating, but also puzzling.
24+
Why does this always seem to work?
25+
Could there be a number where the process breaks down, looping forever or escaping into infinity?
26+
The notebook suggested solving this could reveal something profound — and with it, fame, [fortune][collatz-prize], and a place in history awaits whoever could unlock its secrets.
27+
28+
[collatz-prize]: https://mathprize.net/posts/collatz-conjecture/

exercises/practice/collatz-conjecture/.meta/config.json

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -19,6 +19,6 @@
1919
]
2020
},
2121
"blurb": "Calculate the number of steps to reach 1 using the Collatz conjecture.",
22-
"source": "An unsolved problem in mathematics named after mathematician Lothar Collatz",
23-
"source_url": "https://en.wikipedia.org/wiki/3x_%2B_1_problem"
22+
"source": "Wikipedia",
23+
"source_url": "https://en.wikipedia.org/wiki/Collatz_conjecture"
2424
}

exercises/practice/eliuds-eggs/.docs/introduction.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -58,7 +58,7 @@ The position information encoding is calculated as follows:
5858

5959
### Decimal number on the display
6060

61-
16
61+
8
6262

6363
### Actual eggs in the coop
6464

Lines changed: 10 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,16 @@
11
# Instructions
22

3-
Take a nested list and return a single flattened list with all values except nil/null.
3+
Take a nested array of any depth and return a fully flattened array.
44

5-
The challenge is to take an arbitrarily-deep nested list-like structure and produce a flattened structure without any nil/null values.
5+
Note that some language tracks may include null-like values in the input array, and the way these values are represented varies by track.
6+
Such values should be excluded from the flattened array.
67

7-
For example:
8+
Additionally, the input may be of a different data type and contain different types, depending on the track.
89

9-
input: [1,[2,3,null,4],[null],5]
10+
Check the test suite for details.
1011

11-
output: [1,2,3,4,5]
12+
## Example
13+
14+
input: `[1, [2, 6, null], [[null, [4]], 5]]`
15+
16+
output: `[1, 2, 6, 4, 5]`
Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,7 @@
1+
# Introduction
2+
3+
A shipment of emergency supplies has arrived, but there's a problem.
4+
To protect from damage, the items — flashlights, first-aid kits, blankets — are packed inside boxes, and some of those boxes are nested several layers deep inside other boxes!
5+
6+
To be prepared for an emergency, everything must be easily accessible in one box.
7+
Can you unpack all the supplies and place them into a single box, so they're ready when needed most?
Lines changed: 5 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -1,15 +1,11 @@
11
# Instructions
22

3-
Calculate the number of grains of wheat on a chessboard given that the number on each square doubles.
3+
Calculate the number of grains of wheat on a chessboard.
44

5-
There once was a wise servant who saved the life of a prince.
6-
The king promised to pay whatever the servant could dream up.
7-
Knowing that the king loved chess, the servant told the king he would like to have grains of wheat.
8-
One grain on the first square of a chess board, with the number of grains doubling on each successive square.
5+
A chessboard has 64 squares.
6+
Square 1 has one grain, square 2 has two grains, square 3 has four grains, and so on, doubling each time.
97

10-
There are 64 squares on a chessboard (where square 1 has one grain, square 2 has two grains, and so on).
8+
Write code that calculates:
119

12-
Write code that shows:
13-
14-
- how many grains were on a given square, and
10+
- the number of grains on a given square
1511
- the total number of grains on the chessboard
Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,6 @@
1+
# Introduction
2+
3+
There once was a wise servant who saved the life of a prince.
4+
The king promised to pay whatever the servant could dream up.
5+
Knowing that the king loved chess, the servant told the king he would like to have grains of wheat.
6+
One grain on the first square of a chessboard, with the number of grains doubling on each successive square.

exercises/practice/grains/.meta/config.json

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -20,5 +20,5 @@
2020
},
2121
"blurb": "Calculate the number of grains of wheat on a chessboard given that the number on each square doubles.",
2222
"source": "The CodeRanch Cattle Drive, Assignment 6",
23-
"source_url": "https://coderanch.com/wiki/718824/Grains"
23+
"source_url": "https://web.archive.org/web/20240908084142/https://coderanch.com/wiki/718824/Grains"
2424
}

0 commit comments

Comments
 (0)