|
| 1 | +/* SPDX-License-Identifier: MIT OR Apache-2.0 */ |
| 2 | + |
| 3 | +//! To keep the equations somewhat concise, the following conventions are used: |
| 4 | +//! - all integer operations are in the mathematical sense, without overflow |
| 5 | +//! - concatenation means multiplication: `2xq = 2 * x * q` |
| 6 | +//! - `R = (1 << U::BITS)` is the modulus of wrapping arithmetic in `U` |
| 7 | +
|
| 8 | +use crate::support::int_traits::NarrowingDiv; |
| 9 | +use crate::support::{DInt, HInt, Int}; |
| 10 | + |
| 11 | +/// Compute the remainder `(x << e) % y` with unbounded integers. |
| 12 | +/// Requires `x < 2y` and `y.leading_zeros() >= 2` |
| 13 | +#[allow(dead_code)] |
| 14 | +pub fn linear_mul_reduction<U>(x: U, mut e: u32, mut y: U) -> U |
| 15 | +where |
| 16 | + U: HInt + Int<Unsigned = U>, |
| 17 | + U::D: NarrowingDiv, |
| 18 | +{ |
| 19 | + assert!(y <= U::MAX >> 2); |
| 20 | + assert!(x < (y << 1)); |
| 21 | + let _0 = U::ZERO; |
| 22 | + let _1 = U::ONE; |
| 23 | + |
| 24 | + // power of two divisors |
| 25 | + if (y & (y - _1)).is_zero() { |
| 26 | + if e < U::BITS { |
| 27 | + // shift and only keep low bits |
| 28 | + return (x << e) & (y - _1); |
| 29 | + } else { |
| 30 | + // would shift out all the bits |
| 31 | + return _0; |
| 32 | + } |
| 33 | + } |
| 34 | + |
| 35 | + // Use the identity `(x << e) % y == ((x << (e + s)) % (y << s)) >> s` |
| 36 | + // to shift the divisor so it has exactly two leading zeros to satisfy |
| 37 | + // the precondition of `Reducer::new` |
| 38 | + let s = y.leading_zeros() - 2; |
| 39 | + e += s; |
| 40 | + y <<= s; |
| 41 | + |
| 42 | + // `m: Reducer` keeps track of the remainder `x` in a form that makes it |
| 43 | + // very efficient to do `x <<= k` modulo `y` for integers `k < U::BITS` |
| 44 | + let mut m = Reducer::new(x, y); |
| 45 | + |
| 46 | + // Use the faster special case with constant `k == U::BITS - 1` while we can |
| 47 | + while e >= U::BITS - 1 { |
| 48 | + m.word_reduce(); |
| 49 | + e -= U::BITS - 1; |
| 50 | + } |
| 51 | + // Finish with the variable shift operation |
| 52 | + m.shift_reduce(e); |
| 53 | + |
| 54 | + // The partial remainder is in `[0, 2y)` ... |
| 55 | + let r = m.partial_remainder(); |
| 56 | + // ... so check and correct, and compensate for the earlier shift. |
| 57 | + r.checked_sub(y).unwrap_or(r) >> s |
| 58 | +} |
| 59 | + |
| 60 | +/// Helper type for computing the reductions. The implementation has a number |
| 61 | +/// of seemingly weird choices, but everything is aimed at streamlining |
| 62 | +/// `Reducer::word_reduce` into its current form. |
| 63 | +/// |
| 64 | +/// Implicitly contains: |
| 65 | +/// n in (R/8, R/4) |
| 66 | +/// x in [0, 2n) |
| 67 | +/// The value of `n` is fixed for a given `Reducer`, |
| 68 | +/// but the value of `x` is modified by the methods. |
| 69 | +#[derive(Debug, Clone, PartialEq, Eq)] |
| 70 | +struct Reducer<U: HInt> { |
| 71 | + // m = 2n |
| 72 | + m: U, |
| 73 | + // q = (RR/2) / m |
| 74 | + // r = (RR/2) % m |
| 75 | + // Then RR/2 = qm + r, where `0 <= r < m` |
| 76 | + // The value `q` is only needed during construction, so isn't saved. |
| 77 | + r: U, |
| 78 | + // The value `x` is implicitly stored as `2 * q * x`: |
| 79 | + _2xq: U::D, |
| 80 | +} |
| 81 | + |
| 82 | +impl<U> Reducer<U> |
| 83 | +where |
| 84 | + U: HInt, |
| 85 | + U: Int<Unsigned = U>, |
| 86 | +{ |
| 87 | + /// Construct a reducer for `(x << _) mod n`. |
| 88 | + /// |
| 89 | + /// Requires `R/8 < n < R/4` and `x < 2n`. |
| 90 | + fn new(x: U, n: U) -> Self |
| 91 | + where |
| 92 | + U::D: NarrowingDiv, |
| 93 | + { |
| 94 | + let _1 = U::ONE; |
| 95 | + assert!(n > (_1 << (U::BITS - 3))); |
| 96 | + assert!(n < (_1 << (U::BITS - 2))); |
| 97 | + let m = n << 1; |
| 98 | + assert!(x < m); |
| 99 | + |
| 100 | + // We need q and r s.t. RR/2 = qm + r, and `0 <= r < m` |
| 101 | + // As R/4 < m < R/2, |
| 102 | + // we have R <= q < 2R |
| 103 | + // so let q = R + f |
| 104 | + // RR/2 = (R + f)m + r |
| 105 | + // R(R/2 - m) = fm + r |
| 106 | + |
| 107 | + // v = R/2 - m < R/4 < m |
| 108 | + let v = (_1 << (U::BITS - 1)) - m; |
| 109 | + let (f, r) = v.widen_hi().checked_narrowing_div_rem(m).unwrap(); |
| 110 | + |
| 111 | + // xq < qm <= RR/2 |
| 112 | + // 2xq < RR |
| 113 | + // 2xq = 2xR + 2xf; |
| 114 | + let _2x: U = x << 1; |
| 115 | + let _2xq = _2x.widen_hi() + _2x.widen_mul(f); |
| 116 | + Self { m, r, _2xq } |
| 117 | + } |
| 118 | + |
| 119 | + /// Extract the current remainder in the range `[0, 2n)` |
| 120 | + fn partial_remainder(&self) -> U { |
| 121 | + // RR/2 = qm + r, 0 <= r < m |
| 122 | + // 2xq = uR + v, 0 <= v < R |
| 123 | + // muR = 2mxq - mv |
| 124 | + // = xRR - 2xr - mv |
| 125 | + // mu + (2xr + mv)/R == xR |
| 126 | + |
| 127 | + // 0 <= 2xq < RR |
| 128 | + // R <= q < 2R |
| 129 | + // 0 <= x < R/2 |
| 130 | + // R/4 < m < R/2 |
| 131 | + // 0 <= r < m |
| 132 | + // 0 <= mv < mR |
| 133 | + // 0 <= 2xr < rR < mR |
| 134 | + |
| 135 | + // 0 <= (2xr + mv)/R < 2m |
| 136 | + // Add `mu` to each term to obtain: |
| 137 | + // mu <= xR < mu + 2m |
| 138 | + |
| 139 | + // Since `0 <= 2m < R`, `xR` is the only multiple of `R` between |
| 140 | + // `mu` and `m(u+2)`, so the high half of `m(u+2)` must equal `x`. |
| 141 | + let _1 = U::ONE; |
| 142 | + self.m.widen_mul(self._2xq.hi() + (_1 + _1)).hi() |
| 143 | + } |
| 144 | + |
| 145 | + /// Replace the remainder `x` with `(x << k) - un`, |
| 146 | + /// for a suitable quotient `u`, which is returned. |
| 147 | + fn shift_reduce(&mut self, k: u32) -> U { |
| 148 | + assert!(k < U::BITS); |
| 149 | + // 2xq << k = aRR/2 + b; |
| 150 | + let a = self._2xq.hi() >> (U::BITS - 1 - k); |
| 151 | + let (low, high) = (self._2xq << k).lo_hi(); |
| 152 | + let b = U::D::from_lo_hi(low, high & (U::MAX >> 1)); |
| 153 | + |
| 154 | + // (2xq << k) - aqm |
| 155 | + // = aRR/2 + b - aqm |
| 156 | + // = a(RR/2 - qm) + b |
| 157 | + // = ar + b |
| 158 | + self._2xq = a.widen_mul(self.r) + b; |
| 159 | + a |
| 160 | + } |
| 161 | + |
| 162 | + /// Replace the remainder `x` with `x(R/2) - un`, |
| 163 | + /// for a suitable quotient `u`, which is returned. |
| 164 | + fn word_reduce(&mut self) -> U { |
| 165 | + // 2xq = uR + v |
| 166 | + let (v, u) = self._2xq.lo_hi(); |
| 167 | + // xqR - uqm |
| 168 | + // = uRR/2 + vR/2 - uRR/2 + ur |
| 169 | + // = ur + (v/2)R |
| 170 | + self._2xq = u.widen_mul(self.r) + U::widen_hi(v >> 1); |
| 171 | + u |
| 172 | + } |
| 173 | +} |
| 174 | + |
| 175 | +#[cfg(test)] |
| 176 | +mod test { |
| 177 | + use crate::support::linear_mul_reduction; |
| 178 | + use crate::support::modular::Reducer; |
| 179 | + |
| 180 | + #[test] |
| 181 | + fn reducer_ops() { |
| 182 | + for n in 33..=63_u8 { |
| 183 | + for x in 0..2 * n { |
| 184 | + let temp = Reducer::new(x, n); |
| 185 | + let n = n as u32; |
| 186 | + let x0 = temp.partial_remainder() as u32; |
| 187 | + assert_eq!(x as u32, x0); |
| 188 | + for k in 0..=7 { |
| 189 | + let mut red = temp.clone(); |
| 190 | + let u = red.shift_reduce(k) as u32; |
| 191 | + let x1 = red.partial_remainder() as u32; |
| 192 | + assert_eq!(x1, (x0 << k) - u * n); |
| 193 | + assert!(x1 < 2 * n); |
| 194 | + assert!((red._2xq as u32).is_multiple_of(2 * x1)); |
| 195 | + |
| 196 | + // `word_reduce` is equivalent to |
| 197 | + // `shift_reduce(U::BITS - 1)` |
| 198 | + if k == 7 { |
| 199 | + let mut alt = temp.clone(); |
| 200 | + let w = alt.word_reduce(); |
| 201 | + assert_eq!(u, w as u32); |
| 202 | + assert_eq!(alt, red); |
| 203 | + } |
| 204 | + } |
| 205 | + } |
| 206 | + } |
| 207 | + } |
| 208 | + #[test] |
| 209 | + fn reduction_u8() { |
| 210 | + for y in 1..64u8 { |
| 211 | + for x in 0..2 * y { |
| 212 | + let mut r = x % y; |
| 213 | + for e in 0..100 { |
| 214 | + assert_eq!(r, linear_mul_reduction(x, e, y)); |
| 215 | + // maintain the correct expected remainder |
| 216 | + r <<= 1; |
| 217 | + if r >= y { |
| 218 | + r -= y; |
| 219 | + } |
| 220 | + } |
| 221 | + } |
| 222 | + } |
| 223 | + } |
| 224 | + #[test] |
| 225 | + fn reduction_u128() { |
| 226 | + assert_eq!( |
| 227 | + linear_mul_reduction::<u128>(17, 100, 123456789), |
| 228 | + (17 << 100) % 123456789 |
| 229 | + ); |
| 230 | + |
| 231 | + // power-of-two divisor |
| 232 | + assert_eq!( |
| 233 | + linear_mul_reduction(0xdead_beef, 100, 1_u128 << 116), |
| 234 | + 0xbeef << 100 |
| 235 | + ); |
| 236 | + |
| 237 | + let x = 10_u128.pow(37); |
| 238 | + let y = 11_u128.pow(36); |
| 239 | + assert!(x < y); |
| 240 | + let mut r = x; |
| 241 | + for e in 0..1000 { |
| 242 | + assert_eq!(r, linear_mul_reduction(x, e, y)); |
| 243 | + // maintain the correct expected remainder |
| 244 | + r <<= 1; |
| 245 | + if r >= y { |
| 246 | + r -= y; |
| 247 | + } |
| 248 | + assert!(r != 0); |
| 249 | + } |
| 250 | + } |
| 251 | +} |
0 commit comments