
Open API semantic tagging for interoperability

STATEMENT:

It is a massive loss that API specification lacks "universal dictionary". Why?
Because if there was an universal dictionary then all API publishers would be
able to "tag" their content so that API's could better "understand" each other
resulting in easier cross-mapping. Additionally if they carried "master data"
flag per item, it would allow a single entity (for example a SME) to decide
which cloud service / which item is considered as master data (while same
item in other linked (synced) cloud platforms) would be synced to that master
data.

CHATGPT 4o SPECULATION ON STATEMENT:

One of the most painful unsolved problems in systems integration:

Semantic interoperability — the ability of different systems to understand each other’s

data beyond just structure (schema), down to meaning (semantics).

❌ What Makes Syncing 3rd Party Cloud Platforms So Painful?

1. Lack of Standard Semantics:

o APIs may use different field names for the same

concept: user_id, uid, id, customerNumber, etc.

o Even worse: same name, different meaning (status can mean login status,

project phase, or payment state).

2. No Master Data Ownership Concept:

o APIs rarely declare which system owns the "truth" (master data).

o Changes may overwrite each other blindly during sync, causing conflict or

data loss.

3. Hardcoded Mappings:

o Mapping fields between APIs is done manually, with brittle transformations

(Zapier/Make/n8n).

o If APIs change their contract, everything breaks.

4. Missing Metadata:

o APIs usually don’t expose metadata like:

▪ “This field is optional.”

▪ “This field is calculated, don’t write to it.”

▪ “This is the primary key.”

▪ “This is the master version of this data.”

✅ Your Vision: "Universal Dictionary" + Master Data Flags

You're proposing two key additions:

1. A Common Vocabulary Layer:

o APIs could “tag” their data using shared vocabulary

(e.g., schema.org, UN/CEFACT, FIBO, or custom ontologies).

o E.g., instead of just user_id, also tag it with "schema:identifier.human".

2. Master Data Declaration per Field or Entity:

o Every field or item could carry metadata: isMaster: true/false

o Lets you declare which system is the source of truth — key for bidirectional

sync.

This idea parallels data fabric / knowledge graph / semantic web principles — but

applied practically at the API level.

🔧 Are There Efforts in This Direction?

Yes, though fragmented and not yet mainstream:

• Schema.org / JSON-LD: Embeds meaning in data (used in SEO, limited API

adoption)

• OpenAPI + x-extensions: You can manually annotate fields, but no standard

vocabulary

• FHIR (Healthcare) and GS1 (Supply Chain): Try to standardize semantics for their

domains

• OASIS/UBL: Business documents with consistent terms

• Microsoft’s Common Data Model (CDM): Attempt to normalize semantics across

services like Power Platform, Dynamics, Dataverse

• MDSL (Microservice Data Specification Language): Experimental language to

describe service interfaces with domain semantics

• Data Catalogs / Data Mesh Tools: Offer semantic tagging, but typically internal, not

API-facing

🔄 Is Anything Making Syncing Easier Today?

A few tools and strategies:

• Integration Platforms (iPaaS): Zapier, Make, Workato, Tray.io, n8n — but mapping

still manual.

• Metadata Harvesters: Like Postman, Stoplight, or SmartAPI try to extract some

structure

• OpenAPI + JSON Schema: Helps validate structure, not meaning

• CDPs (Customer Data Platforms) and iSaaS: Some offer identity resolution or

master-data rules, but still siloed

🧠 Summary

Your insight is spot-on. The lack of a semantic contract between APIs is a root cause of the

fragile and expensive state of integration.

✔ Your proposal:

• Could simplify cross-platform sync

• Would allow smarter, less brittle automations

• Could enable decentralized data ownership and governance

🚧 But adoption is a challenge — it requires:

• Standardizing vocabularies (hard in multi-domain world)

• Agreement across vendors

• Possibly new tooling and protocols

QUESTION:

How should we extend the current Open API Specification
https://spec.openapis.org/oas/latest.html to enable and support the desired
semantic interoperability?

CHATGPT 4o RESPONSE TO THE QUESTION:

To enable semantic interoperability within the current OpenAPI Specification (OAS), you

would extend the spec by adding semantic metadata — ideally using the existing

mechanism of custom vendor extensions (x-...) — in a structured and consistent way.

Here’s a concrete breakdown:

✅ How to Extend OpenAPI for Semantic

Interoperability

1. Use x-semantic-tags or similar extension

https://spec.openapis.org/oas/latest.html

You can add semantic tags at the property level in OpenAPI schemas to declare universal

meaning using standard vocabularies (e.g. schema.org, FIBO, CDM, or your own ontology).

🔧 Example:

yaml

CopyEdit

components:

 schemas:

 User:

 type: object

 properties:

 id:

 type: string

 description: Internal user ID

 x-semantic-tag: "schema:identifier.human"

 email:

 type: string

 format: email

 x-semantic-tag: "schema:email.human"

 is_active:

 type: boolean

 x-semantic-tag: "custom:status.active"

2. Declare Master Data Authority

Introduce a field-level or entity-level declaration like x-master-data: This is of course

something the owner of the “to be synced API platforms” should be able to decide. Owner

should point out which items have “true” for master data. Like entreprenuer in SME paying

for 12 different cloud services, willing to use them in sync data wise.

yaml

CopyEdit

components:

 schemas:

 User:

 type: object

 x-master-data-owner: true # This API/service is source of truth

 properties:

 id:

 type: string

 x-master-data: true # Master field

 email:

 type: string

 x-master-data: false # Synced, not authoritative

You could make this field more expressive, e.g. "owned" | "synced" | "read-only" |

"calculated".

3. Define x-mapping-candidates for Crosswalks

https://schema.org/
https://learn.microsoft.com/en-us/common-data-model/

If you're designing for integration, you could include potential field mappings to known

systems or schemas:

yaml

CopyEdit

 customer_id:

 type: string

 x-mapping-candidates:

 - "Salesforce.Contact.Id"

 - "SAP.CustomerNumber"

 - "schema:identifier"

This makes it easier for systems to auto-suggest crosswalks or data bridges.

4. Encourage JSON-LD-style Embedding

You could introduce semantic context in the payload, similar to JSON-LD. OpenAPI 3.1

allows application/ld+jsonas a media type already.

yaml

CopyEdit

requestBody:

 content:

 application/ld+json:

 schema:

 $ref: "#/components/schemas/User"

5. Tools / Ecosystem Support

To make this useful:

• Extend tools like Swagger UI, Redoc, and code generators to visualize semantic tags.

• Build middleware that uses semantic tags to auto-match fields between APIs.

• Add validators that check for conflicts (e.g. two APIs claim to be master of the same

tag).

🌍 Benefits

• Shared meaning across systems → easier integration

• Smarter sync logic (know what's authoritative)

• Easier to automate field mapping and validation

• Lays foundation for decentralized data governance

🧩 Potential Standards to Build On

• Schema.org

• Common Data Model (CDM)

• FIBO (finance)

• FHIR (healthcare) for advanced metadata strategies

• W3C JSON-LD for embedding context

Here’s a complete OpenAPI 3.1 example document that uses extensions (x-
semantic-tag, x-master-data, and x-master-data-owner) to demonstrate how you
could support semantic interoperability and master data governance directly
within an API spec.

🧩 Scenario: 3 APIs, 3 Different Naming Conventions

🎯 Shared Semantic Target: A person/contact record

We'll use this common semantic model:

Semantic Tag Meaning

schema:identifier Unique ID

schema:name Full name

schema:email Email address

schema:telephone Phone number

schema:jobTitle Job title

schema:organization Company or employer

💼 1. Salesforce API (CRM system)
yaml

CopyEdit

SalesforceContact:

 type: object

 properties:

 Id:

 type: string

 x-semantic-tag: schema:identifier

 Name:

 type: string

 x-semantic-tag: schema:name

 Email:

 type: string

 x-semantic-tag: schema:email

 Phone:

 type: string

 x-semantic-tag: schema:telephone

 Title:

https://schema.org/
https://learn.microsoft.com/en-us/common-data-model/
https://www.w3.org/TR/json-ld11/

 type: string

 x-semantic-tag: schema:jobTitle

 AccountName:

 type: string

 x-semantic-tag: schema:organization

🛒 2. Shopify API (E-commerce platform)
yaml

CopyEdit

ShopifyCustomer:

 type: object

 properties:

 id:

 type: integer

 x-semantic-tag: schema:identifier

 first_name:

 type: string

 last_name:

 type: string

 email:

 type: string

 x-semantic-tag: schema:email

 phone:

 type: string

 x-semantic-tag: schema:telephone

To improve semantic mapping:

yaml

CopyEdit

 full_name:

 type: string

 x-semantic-tag: schema:name

🏢 3. Microsoft Entra ID (Identity system, formerly Azure AD)
yaml

CopyEdit

EntraUser:

 type: object

 properties:

 userPrincipalName:

 type: string

 x-semantic-tag: schema:email

 displayName:

 type: string

 x-semantic-tag: schema:name

 id:

 type: string

 x-semantic-tag: schema:identifier

 jobTitle:

 type: string

 x-semantic-tag: schema:jobTitle

 mobilePhone:

 type: string

 x-semantic-tag: schema:telephone

 companyName:

 type: string

 x-semantic-tag: schema:organization

✅ Semantic Tagging Results in This Mapping Table:
Concept Salesforce Shopify Microsoft Entra ID

schema:identifier Id id id

schema:name Name full_name* displayName

schema:email Email email userPrincipalName

schema:telephone Phone phone mobilePhone

schema:jobTitle Title — jobTitle

schema:organization AccountName — companyName

* full_name may need to be synthesized from first_name + last_name.

🔍 Why This Matters

• Without semantic tagging, the same concept is hidden under different names →

hard to map

• With tagging, tools can:

o Auto-align fields across APIs

o Warn of missing data (e.g., no schema:jobTitle in Shopify)

o Enable low-code sync logic with confidence in what each field means

🧠 Overview: AI-Orchestrated API Sync (Semantic + Master Data)

✅ Assumptions

• Each service publishes a semantically-tagged OpenAPI 3.1 spec

• Fields are annotated with:

o x-semantic-tag: describing what the field means

o x-master-data: whether the field is authoritative

• AI engine has access to:

o All participating OpenAPI specs

o Some context/config from the data owner (e.g., sync direction preferences)

🧩 Step-by-Step Process (High-Level)

1. Ingest & Normalize API Specs

AI parses n OpenAPI specs with semantic tags:

• Builds a unified semantic index, e.g.:

json

CopyEdit

{

 "schema:email": {

 "Salesforce": "Email",

 "Shopify": "email",

 "EntraID": "userPrincipalName"

 },

 ...

}

• Groups together all representations of the same concept using semantic tag keys.

2. Detect Master Data Ownership

AI reads x-master-data: true flags:

• Example:

yaml

CopyEdit

Salesforce:

 Email: x-master-data: true

Shopify:

 email: x-master-data: false

EntraID:

 userPrincipalName: x-master-data: false

• Salesforce is identified as source of truth for emails, so sync logic should push

from Salesforce and pull toothers.

3. Auto-Generate Mapping Rules

AI generates:

• Field mappings across services (via x-semantic-tag)

• Transformation logic (e.g., join first_name + last_name → schema:name)

• Directionality rules:

o Fields with x-master-data: true → write to others

o Fields without x-master-data or set to false → read-only or read-

preferring

Example rule:

json

CopyEdit

{

 "source": "Salesforce.Email",

 "targets": [

 "Shopify.email",

 "EntraID.userPrincipalName"

],

 "direction": "one-way",

 "onConflict": "overwrite",

 "syncInterval": "daily"

}

4. Build Sync Workflows (e.g. in n8n)

AI uses predefined nodes for HTTP requests, authentication, transformations, and error

handling.

Each service:

• GETs records

• Transforms them based on the unified semantic model

• POSTs/PUTs to targets that are not master

For example:

• Salesforce → Shopify + EntraID

o Email and Name pushed

• Shopify → Salesforce

o Only phone or purchase metadata might be pulled (if it's not mastered by

Salesforce)

These workflows are visualized, exported as n8n JSON configs, or deployed via the n8n API.

5. Monitor and Resolve Conflicts

AI watches:

• Divergences from sync logic

• Repeated overwrites / ping-pong loops (common in naive bi-directional sync)

Uses tags + master flags to:

• Enforce no overwrite of master fields

• Suggest better sync rules (e.g., move phone master from Shopify to EntraID)

🔐 Example: Managing email and jobTitle

• Salesforce is x-master-data for email and jobTitle

• AI sets up push-only logic for these fields

• EntraID has userPrincipalName, so AI maps schema:email →
userPrincipalName

• If EntraID tries to update email, AI blocks or logs the attempt unless explicitly

overridden

⚙️ Benefits of This AI-Orchestrated Sync
Feature Enabled by

Auto-matching of fields x-semantic-tag

Authority-based syncing x-master-data

Minimal manual setup AI-driven orchestration

Scalability to 100s of APIs Semantic abstraction

Conflict prevention Master data control logic

🌍 Final Thoughts

With this model:

• APIs become self-describing

• AI becomes a data sync orchestrator, not just a middleware

• Businesses can declare data governance per field across systems

This is realistic to implement today with current OpenAPI 3.1 + tooling + simple AI agents

(no deep learning needed).

tomas.westerholm@tietoa.fi

mailto:tomas.westerholm@tietoa.fi

	Open API semantic tagging for interoperability
	❌ What Makes Syncing 3rd Party Cloud Platforms So Painful?
	✅ Your Vision: "Universal Dictionary" + Master Data Flags
	🔧 Are There Efforts in This Direction?
	🔄 Is Anything Making Syncing Easier Today?
	🧠 Summary
	✅ How to Extend OpenAPI for Semantic Interoperability
	1. Use x-semantic-tags or similar extension
	🔧 Example:

	2. Declare Master Data Authority
	3. Define x-mapping-candidates for Crosswalks
	4. Encourage JSON-LD-style Embedding
	5. Tools / Ecosystem Support

	🌍 Benefits
	🧩 Potential Standards to Build On
	🧩 Scenario: 3 APIs, 3 Different Naming Conventions
	🎯 Shared Semantic Target: A person/contact record

	💼 1. Salesforce API (CRM system)
	🛒 2. Shopify API (E-commerce platform)
	🏢 3. Microsoft Entra ID (Identity system, formerly Azure AD)
	✅ Semantic Tagging Results in This Mapping Table:
	🔍 Why This Matters
	🧠 Overview: AI-Orchestrated API Sync (Semantic + Master Data)
	✅ Assumptions

	🧩 Step-by-Step Process (High-Level)
	1. Ingest & Normalize API Specs
	2. Detect Master Data Ownership
	3. Auto-Generate Mapping Rules
	4. Build Sync Workflows (e.g. in n8n)
	5. Monitor and Resolve Conflicts

	🔐 Example: Managing email and jobTitle
	⚙️ Benefits of This AI-Orchestrated Sync
	🌍 Final Thoughts

