|
| 1 | +# GuideLLM Benchmark Testing Best Practice |
| 2 | + |
| 3 | +Do first easy-go guidellm benchmark testing from scratch using vLLM Simulator. |
| 4 | + |
| 5 | +## Getting Started |
| 6 | + |
| 7 | +### 📦 1. Benchmark Testing Environment Setup |
| 8 | + |
| 9 | +#### 1.1 Create a Conda Environment (recommended) |
| 10 | + |
| 11 | +```bash |
| 12 | +conda create -n guidellm-bench python=3.11 -y |
| 13 | +conda activate guidellm-bench |
| 14 | +``` |
| 15 | + |
| 16 | +#### 1.2 Install Dependencies |
| 17 | + |
| 18 | +```bash |
| 19 | +git clone https://github.com/vllm-project/guidellm.git |
| 20 | +cd guidellm |
| 21 | +pip install guidellm |
| 22 | +``` |
| 23 | + |
| 24 | +For more detailed instructions, refer to [GuideLLM README](https://github.com/vllm-project/guidellm/blob/main/README.md). |
| 25 | + |
| 26 | +#### 1.3 Verify Installation |
| 27 | + |
| 28 | +```bash |
| 29 | +guidellm --help |
| 30 | +``` |
| 31 | + |
| 32 | +#### 1.4 Startup OpenAI-compatible API in vLLM simulator docker container |
| 33 | + |
| 34 | +```bash |
| 35 | +docker pull ghcr.io/llm-d/llm-d-inference-sim:v0.4.0 |
| 36 | + |
| 37 | +docker run --rm --publish 8000:8000 \ |
| 38 | +ghcr.io/llm-d/llm-d-inference-sim:v0.4.0 \ |
| 39 | +--port 8000 \ |
| 40 | +--model "Qwen/Qwen2.5-1.5B-Instruct" \ |
| 41 | +--lora-modules '{"name":"tweet-summary-0"}' '{"name":"tweet-summary-1"}' |
| 42 | +``` |
| 43 | + |
| 44 | +For more detailed instructions, refer to: [vLLM Simulator](https://llm-d.ai/docs/architecture/Components/inference-sim) |
| 45 | + |
| 46 | +Docker image versions: [Docker Images](https://github.com/llm-d/llm-d-inference-sim/pkgs/container/llm-d-inference-sim) |
| 47 | + |
| 48 | +Check open-ai api working via curl: |
| 49 | + |
| 50 | +- check /v1/models |
| 51 | + |
| 52 | +```bash |
| 53 | +curl --request GET 'http://localhost:8000/v1/models' |
| 54 | +``` |
| 55 | + |
| 56 | +- check /v1/chat/completions |
| 57 | + |
| 58 | +```bash |
| 59 | +curl --request POST 'http://localhost:8000/v1/chat/completions' \ |
| 60 | +--header 'Content-Type: application/json' \ |
| 61 | +--data-raw '{ |
| 62 | + "model": "tweet-summary-0", |
| 63 | + "stream": false, |
| 64 | + "messages": [{"role": "user", "content": "Say this is a test!"}] |
| 65 | +}' |
| 66 | +``` |
| 67 | + |
| 68 | +- check /v1/completions |
| 69 | + |
| 70 | +```bash |
| 71 | +curl --request POST 'http://localhost:8000/v1/completions' \ |
| 72 | +--header 'Content-Type: application/json' \ |
| 73 | +--data-raw '{ |
| 74 | + "model": "tweet-summary-0", |
| 75 | + "stream": false, |
| 76 | + "prompt": "Say this is a test!", |
| 77 | + "max_tokens": 128 |
| 78 | +}' |
| 79 | +``` |
| 80 | + |
| 81 | +#### 1.5 Download Tokenizer |
| 82 | + |
| 83 | +Download Qwen/Qwen3-0.6B tokenizer.json from [Qwen/Qwen3-0.6B](https://modelscope.cn/models/Qwen/Qwen3-0.6B/files) save to local path. |
| 84 | + |
| 85 | +______________________________________________________________________ |
| 86 | + |
| 87 | +## 🚀 2. Running Benchmarks |
| 88 | + |
| 89 | +```bash |
| 90 | +guidellm benchmark \ |
| 91 | +--target "http://localhost:8000/" \ |
| 92 | +--model "tweet-summary-0" \ |
| 93 | +--processor "${local_path}/Qwen3-0.6B" \ |
| 94 | +--rate-type sweep \ |
| 95 | +--max-seconds 10 \ |
| 96 | +--max-requests 10 \ |
| 97 | +--data "prompt_tokens=128,output_tokens=56" |
| 98 | +``` |
| 99 | + |
| 100 | +______________________________________________________________________ |
| 101 | + |
| 102 | +## 📊 3. Results Interpretation |
| 103 | + |
| 104 | +   |
| 105 | + |
| 106 | +After the benchmark completes, key results are clear and straightforward, such as: |
| 107 | + |
| 108 | +- **`TTFT`**: Time to First Token |
| 109 | +- **`TPOT`**: Time Per Output Token |
| 110 | +- **`ITL`**: Inter-Token Latency |
| 111 | + |
| 112 | +The first benchmark test complete. |
0 commit comments