|
| 1 | +# SPDX-License-Identifier: Apache-2.0 |
| 2 | +from typing import List, Optional |
| 3 | + |
| 4 | +from vllm.config import CacheConfig, ModelConfig, SchedulerConfig |
| 5 | +from vllm.multimodal.inputs import MultiModalKwargs, PlaceholderRange |
| 6 | +from vllm.sampling_params import SamplingParams |
| 7 | +from vllm.v1.core.scheduler import Scheduler |
| 8 | +from vllm.v1.outputs import ModelRunnerOutput |
| 9 | +from vllm.v1.request import Request, RequestStatus |
| 10 | + |
| 11 | + |
| 12 | +def create_scheduler( |
| 13 | + model: str = "facebook/opt-125m", |
| 14 | + max_num_seqs: int = 16, |
| 15 | + max_num_batched_tokens: int = 8192, |
| 16 | +) -> Scheduler: |
| 17 | + scheduler_config = SchedulerConfig( |
| 18 | + max_num_seqs=max_num_seqs, |
| 19 | + max_num_batched_tokens=max_num_batched_tokens, |
| 20 | + max_model_len=max_num_batched_tokens, |
| 21 | + ) |
| 22 | + model_config = ModelConfig( |
| 23 | + model=model, |
| 24 | + task="auto", |
| 25 | + tokenizer=model, |
| 26 | + tokenizer_mode="auto", |
| 27 | + trust_remote_code=True, |
| 28 | + dtype="float16", |
| 29 | + seed=42, |
| 30 | + ) |
| 31 | + cache_config = CacheConfig( |
| 32 | + block_size=16, |
| 33 | + gpu_memory_utilization=0.9, |
| 34 | + swap_space=0, |
| 35 | + cache_dtype="auto", |
| 36 | + ) |
| 37 | + cache_config.num_gpu_blocks = 10000 |
| 38 | + return Scheduler(scheduler_config, |
| 39 | + model_config, |
| 40 | + cache_config, |
| 41 | + lora_config=None) |
| 42 | + |
| 43 | + |
| 44 | +def create_requests( |
| 45 | + num_requests: int, |
| 46 | + num_tokens: int = 10, |
| 47 | + mm_positions: Optional[List[PlaceholderRange]] = None, |
| 48 | +): |
| 49 | + sampling_params = SamplingParams() |
| 50 | + requests = [] |
| 51 | + for i in range(num_requests): |
| 52 | + if mm_positions is not None: |
| 53 | + mm_position = mm_positions[i] |
| 54 | + mm_inputs = [MultiModalKwargs({})] * len(mm_position) |
| 55 | + else: |
| 56 | + mm_position = None |
| 57 | + mm_inputs = None |
| 58 | + request = Request( |
| 59 | + request_id=f"{i}", |
| 60 | + prompt=None, |
| 61 | + prompt_token_ids=[i] * num_tokens, |
| 62 | + sampling_params=sampling_params, |
| 63 | + multi_modal_inputs=mm_inputs, |
| 64 | + multi_modal_placeholders=mm_position, |
| 65 | + multi_modal_hashes=None, |
| 66 | + eos_token_id=None, |
| 67 | + arrival_time=0, |
| 68 | + ) |
| 69 | + requests.append(request) |
| 70 | + return requests |
| 71 | + |
| 72 | + |
| 73 | +def test_add_requests(): |
| 74 | + scheduler = create_scheduler() |
| 75 | + requests = create_requests(num_requests=10) |
| 76 | + |
| 77 | + for i, request in enumerate(requests): |
| 78 | + scheduler.add_request(request) |
| 79 | + assert request.request_id in scheduler.requests |
| 80 | + assert len(scheduler.waiting) == i + 1 |
| 81 | + |
| 82 | + |
| 83 | +def test_finish_request(): |
| 84 | + scheduler = create_scheduler() |
| 85 | + requests = create_requests(num_requests=10) |
| 86 | + for request in requests: |
| 87 | + scheduler.add_request(request) |
| 88 | + |
| 89 | + for i, request in enumerate(requests): |
| 90 | + scheduler.finish_requests(request.request_id, |
| 91 | + RequestStatus.FINISHED_ABORTED) |
| 92 | + assert request.request_id not in scheduler.requests |
| 93 | + assert len(scheduler.waiting) == 9 - i |
| 94 | + |
| 95 | + |
| 96 | +def test_get_num_unfinished_requests(): |
| 97 | + scheduler = create_scheduler() |
| 98 | + requests = create_requests(num_requests=10) |
| 99 | + for request in requests: |
| 100 | + scheduler.add_request(request) |
| 101 | + |
| 102 | + for i, request in enumerate(requests): |
| 103 | + scheduler.finish_requests(request.request_id, |
| 104 | + RequestStatus.FINISHED_STOPPED) |
| 105 | + assert scheduler.get_num_unfinished_requests() == len(requests) - i - 1 |
| 106 | + |
| 107 | + |
| 108 | +def test_schedule(): |
| 109 | + scheduler = create_scheduler() |
| 110 | + requests = create_requests(num_requests=10) |
| 111 | + for request in requests: |
| 112 | + scheduler.add_request(request) |
| 113 | + |
| 114 | + # Test initial scheduling |
| 115 | + output = scheduler.schedule() |
| 116 | + assert len(output.scheduled_new_reqs) == len(requests) |
| 117 | + assert len(output.scheduled_cached_reqs) == 0 |
| 118 | + assert len(output.finished_req_ids) == 0 |
| 119 | + # Verify all requests are scheduled. |
| 120 | + for req_id, num_tokens in output.num_scheduled_tokens.items(): |
| 121 | + assert num_tokens == len(requests[int(req_id)].prompt_token_ids) |
| 122 | + |
| 123 | + # Verify requests moved from waiting to running |
| 124 | + assert len(scheduler.waiting) == 0 |
| 125 | + assert len(scheduler.running) == len(requests) |
| 126 | + for i, request in enumerate(requests): |
| 127 | + assert scheduler.running[i] == request |
| 128 | + |
| 129 | + |
| 130 | +def test_schedule_multimodal_requests(): |
| 131 | + scheduler = create_scheduler(model="llava-hf/llava-1.5-7b-hf") |
| 132 | + mm_positions = [[PlaceholderRange(offset=i, length=100)] |
| 133 | + for i in range(10)] |
| 134 | + requests = create_requests( |
| 135 | + num_requests=10, |
| 136 | + num_tokens=200, |
| 137 | + mm_positions=mm_positions, |
| 138 | + ) |
| 139 | + for request in requests: |
| 140 | + scheduler.add_request(request) |
| 141 | + |
| 142 | + output = scheduler.schedule() |
| 143 | + assert len(output.scheduled_new_reqs) == len(requests) |
| 144 | + assert len(output.scheduled_cached_reqs) == 0 |
| 145 | + assert len(output.finished_req_ids) == 0 |
| 146 | + for req_id, num_tokens in output.num_scheduled_tokens.items(): |
| 147 | + assert num_tokens == len(requests[int(req_id)].prompt_token_ids) |
| 148 | + assert len(output.scheduled_encoder_inputs) == 10 |
| 149 | + for req_id, encoder_input in output.scheduled_encoder_inputs.items(): |
| 150 | + assert len(encoder_input) == 1 |
| 151 | + |
| 152 | + |
| 153 | +def test_schedule_partial_requests(): |
| 154 | + """Test scheduling behavior with partial requests. |
| 155 | +
|
| 156 | + This test verifies that: |
| 157 | + 1. The scheduler can handle multiple partial requests in a single step when |
| 158 | + constrained by encoder budget. |
| 159 | + 2. A request in RUNNING state may be unscheduled in subsequent steps if |
| 160 | + there is insufficient encoder budget. |
| 161 | + """ |
| 162 | + scheduler = create_scheduler( |
| 163 | + model="llava-hf/llava-1.5-7b-hf", |
| 164 | + max_num_batched_tokens=1024, |
| 165 | + ) |
| 166 | + mm_positions = [[PlaceholderRange(offset=100, length=600)] |
| 167 | + for _ in range(3)] |
| 168 | + requests = create_requests( |
| 169 | + num_requests=3, |
| 170 | + num_tokens=800, |
| 171 | + mm_positions=mm_positions, |
| 172 | + ) |
| 173 | + for request in requests: |
| 174 | + scheduler.add_request(request) |
| 175 | + |
| 176 | + output = scheduler.schedule() |
| 177 | + assert len(output.scheduled_new_reqs) == 3 |
| 178 | + assert len(output.scheduled_cached_reqs) == 0 |
| 179 | + assert len(output.finished_req_ids) == 0 |
| 180 | + |
| 181 | + assert scheduler.max_num_encoder_input_tokens == 1024 |
| 182 | + # The first request is scheduled fully. |
| 183 | + assert output.num_scheduled_tokens[requests[0].request_id] == 800 |
| 184 | + # The second request is scheduled partially. |
| 185 | + # The <img> tokens are not scheduled because of the encoder budget. |
| 186 | + assert output.num_scheduled_tokens[requests[1].request_id] == 100 |
| 187 | + # The third request is also scheduled partially. |
| 188 | + # The <img> tokens are not scheduled because of the encoder budget. |
| 189 | + assert output.num_scheduled_tokens[requests[2].request_id] == 100 |
| 190 | + req_to_index = { |
| 191 | + request.request_id: i |
| 192 | + for i, request in enumerate(requests) |
| 193 | + } |
| 194 | + model_runner_output = ModelRunnerOutput( |
| 195 | + req_ids=[request.request_id for request in requests], |
| 196 | + req_id_to_index=req_to_index, |
| 197 | + sampled_token_ids=[0] * len(requests), |
| 198 | + logprob_token_ids_cpu=None, |
| 199 | + logprobs_cpu=None, |
| 200 | + ) |
| 201 | + scheduler.update_from_output(output, model_runner_output) |
| 202 | + |
| 203 | + # Schedule the next step. |
| 204 | + # Only the first and second requests are scheduled. |
| 205 | + # The third request is in the RUNNING state but not scheduled in this step |
| 206 | + # because of the encoder budget. |
| 207 | + output = scheduler.schedule() |
| 208 | + assert len(scheduler.running) == 3 |
| 209 | + assert len(output.scheduled_new_reqs) == 0 |
| 210 | + assert len(output.scheduled_cached_reqs) == 2 |
| 211 | + assert len(output.finished_req_ids) == 0 |
| 212 | + assert output.num_scheduled_tokens[requests[0].request_id] == 1 |
| 213 | + assert output.num_scheduled_tokens[requests[1].request_id] == 700 |
| 214 | + assert requests[2].request_id not in output.num_scheduled_tokens |
0 commit comments