Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
154 changes: 5 additions & 149 deletions app.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,12 @@
import altair as alt
import streamlit as st

from penn_chime.defaults import RateLos
from penn_chime.models import Parameters
from penn_chime.presentation import (
additional_projections_chart,
admitted_patients_chart,
display_header,
display_sidebar,
display_n_days_slider,
draw_census_table,
draw_projected_admissions_table,
draw_raw_sir_simulation_table,
Expand All @@ -27,143 +27,8 @@
# In dev, this should be shown
st.markdown(hide_menu_style, unsafe_allow_html=True)


def display_sidebar(st, d) -> Parameters:
# Initialize variables
# these functions create input elements and bind the values they are set to
# to the variables they are set equal to
# it's kindof like ember or angular if you are familiar with those

if d.known_infected < 1:
raise ValueError("Known cases must be larger than one to enable predictions.")

current_hospitalized = st.sidebar.number_input(
"Currently Hospitalized COVID-19 Patients",
min_value=0,
value=d.current_hospitalized,
step=1,
format="%i"
)

doubling_time = st.sidebar.number_input(
"Doubling time before social distancing (days)",
min_value=0,
value=d.doubling_time,
step=1,
format="%i"
)

relative_contact_rate = (
st.sidebar.number_input(
"Social distancing (% reduction in social contact)",
min_value=0,
max_value=100,
value=d.relative_contact_rate * 100,
step=5,
format="%i",
)
/ 100.0
)

hospitalized_rate = (
st.sidebar.number_input(
"Hospitalization %(total infections)",
min_value=0.001,
max_value=100.0,
value=d.hospitalized.rate * 100,
step=1.0, format="%f",
)
/ 100.0
)
icu_rate = (
st.sidebar.number_input(
"ICU %(total infections)",
min_value=0.0,
max_value=100.0,
value=d.icu.rate * 100,
step=1.0,
format="%f"
)
/ 100.0
)
ventilated_rate = (
st.sidebar.number_input(
"Ventilated %(total infections)",
min_value=0.0,
max_value=100.0,
value=d.ventilated.rate * 100,
step=1.0,
format="%f"
)
/ 100.0
)

hospitalized_los = st.sidebar.number_input(
"Hospital Length of Stay",
min_value=0,
value=d.hospitalized.length_of_stay,
step=1,
format="%i",
)
icu_los = st.sidebar.number_input(
"ICU Length of Stay",
min_value=0,
value=d.icu.length_of_stay,
step=1,
format="%i",
)
ventilated_los = st.sidebar.number_input(
"Vent Length of Stay",
min_value=0,
value=d.ventilated.length_of_stay,
step=1,
format="%i",
)

market_share = (
st.sidebar.number_input(
"Hospital Market Share (%)",
min_value=0.001,
max_value=100.0,
value=d.market_share * 100,
step=1.0,
format="%f"
)
/ 100.0
)
susceptible = st.sidebar.number_input(
"Regional Population",
min_value=1,
value=d.region.susceptible,
step=100000,
format="%i"
)

known_infected = st.sidebar.number_input(
"Currently Known Regional Infections (only used to compute detection rate - does not change projections)",
min_value=0,
value=d.known_infected,
step=10,
format="%i",
)

return Parameters(
current_hospitalized=current_hospitalized,
doubling_time=doubling_time,
known_infected=known_infected,
market_share=market_share,
relative_contact_rate=relative_contact_rate,
susceptible=susceptible,

hospitalized=RateLos(hospitalized_rate, hospitalized_los),
icu=RateLos(icu_rate, icu_los),
ventilated=RateLos(ventilated_rate, ventilated_los)
)


p = display_sidebar(st, DEFAULTS)

# PRESENTATION
display_header(
st,
total_infections=p.infected,
Expand Down Expand Up @@ -195,22 +60,13 @@ def display_sidebar(st, d) -> Parameters:

)

# PRESENTATION
# One more combination variable initialization / input element creation
p.n_days = st.slider(
"Number of days to project",
min_value=30,
max_value=200,
value=DEFAULTS.n_days,
step=1,
format="%i"
)
display_n_days_slider(st, p, DEFAULTS)

# format data
# begin format data
projection_admits = build_admissions_df(p.n_days, *p.dispositions)
census_df = build_census_df(projection_admits, *p.lengths_of_stay)
# end format data

# PRESENTATION
st.subheader("New Admissions")
st.markdown("Projected number of **daily** COVID-19 admissions at Penn hospitals")
st.altair_chart(
Expand Down
148 changes: 147 additions & 1 deletion penn_chime/presentation.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,8 @@
import numpy as np
import pandas as pd

from .defaults import Constants
from .defaults import Constants, RateLos
from .models import Parameters

hide_menu_style = """
<style>
Expand Down Expand Up @@ -88,6 +89,151 @@ def display_header(
return None


def display_sidebar(st, d: Constants) -> Parameters:
# Initialize variables
# these functions create input elements and bind the values they are set to
# to the variables they are set equal to
# it's kindof like ember or angular if you are familiar with those

if d.known_infected < 1:
raise ValueError("Known cases must be larger than one to enable predictions.")

current_hospitalized = st.sidebar.number_input(
"Currently Hospitalized COVID-19 Patients",
min_value=0,
value=d.current_hospitalized,
step=1,
format="%i"
)

doubling_time = st.sidebar.number_input(
"Doubling time before social distancing (days)",
min_value=0,
value=d.doubling_time,
step=1,
format="%i"
)

relative_contact_rate = (
st.sidebar.number_input(
"Social distancing (% reduction in social contact)",
min_value=0,
max_value=100,
value=d.relative_contact_rate * 100,
step=5,
format="%i",
)
/ 100.0
)

hospitalized_rate = (
st.sidebar.number_input(
"Hospitalization %(total infections)",
min_value=0.001,
max_value=100.0,
value=d.hospitalized.rate * 100,
step=1.0, format="%f",
)
/ 100.0
)
icu_rate = (
st.sidebar.number_input(
"ICU %(total infections)",
min_value=0.0,
max_value=100.0,
value=d.icu.rate * 100,
step=1.0,
format="%f"
)
/ 100.0
)
ventilated_rate = (
st.sidebar.number_input(
"Ventilated %(total infections)",
min_value=0.0,
max_value=100.0,
value=d.ventilated.rate * 100,
step=1.0,
format="%f"
)
/ 100.0
)

hospitalized_los = st.sidebar.number_input(
"Hospital Length of Stay",
min_value=0,
value=d.hospitalized.length_of_stay,
step=1,
format="%i",
)
icu_los = st.sidebar.number_input(
"ICU Length of Stay",
min_value=0,
value=d.icu.length_of_stay,
step=1,
format="%i",
)
ventilated_los = st.sidebar.number_input(
"Vent Length of Stay",
min_value=0,
value=d.ventilated.length_of_stay,
step=1,
format="%i",
)

market_share = (
st.sidebar.number_input(
"Hospital Market Share (%)",
min_value=0.001,
max_value=100.0,
value=d.market_share * 100,
step=1.0,
format="%f"
)
/ 100.0
)
susceptible = st.sidebar.number_input(
"Regional Population",
min_value=1,
value=d.region.susceptible,
step=100000,
format="%i"
)

known_infected = st.sidebar.number_input(
"Currently Known Regional Infections (only used to compute detection rate - does not change projections)",
min_value=0,
value=d.known_infected,
step=10,
format="%i",
)

return Parameters(
current_hospitalized=current_hospitalized,
doubling_time=doubling_time,
known_infected=known_infected,
market_share=market_share,
relative_contact_rate=relative_contact_rate,
susceptible=susceptible,

hospitalized=RateLos(hospitalized_rate, hospitalized_los),
icu=RateLos(icu_rate, icu_los),
ventilated=RateLos(ventilated_rate, ventilated_los)
)


def display_n_days_slider(st, p: Parameters, d: Constants):
"""Display n_days_slider."""
p.n_days = st.slider(
"Number of days to project",
min_value=30,
max_value=200,
value=d.n_days,
step=1,
format="%i"
)


def show_more_info_about_this_tool(
st,
recovery_days,
Expand Down