Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions src/lightning_app/CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,8 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).

- Fixed the work not stopped when successful when passed directly to the LightningApp ([#15801](https://github.com/Lightning-AI/lightning/pull/15801))

- Fixed the PyTorch Inference locally on GPU ([#15813](https://github.com/Lightning-AI/lightning/pull/15813))


## [1.8.2] - 2022-11-17

Expand Down
6 changes: 6 additions & 0 deletions src/lightning_app/components/serve/gradio.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,10 @@
import abc
import os
from functools import partial
from types import ModuleType
from typing import Any, List, Optional

from lightning_app.components.serve.python_server import _PyTorchSpawnRunExecutor, WorkRunExecutor
from lightning_app.core.work import LightningWork
from lightning_app.utilities.imports import _is_gradio_available, requires

Expand Down Expand Up @@ -39,6 +41,10 @@ def __init__(self, *args, **kwargs):
assert self.inputs
assert self.outputs
self._model = None
# Note: Enable to run inference on GPUs.
self._run_executor_cls = (
WorkRunExecutor if os.getenv("LIGHTNING_CLOUD_APP_ID", None) else _PyTorchSpawnRunExecutor
)

@property
def model(self):
Expand Down
48 changes: 48 additions & 0 deletions src/lightning_app/components/serve/python_server.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
import abc
import base64
import os
from pathlib import Path
from typing import Any, Dict, Optional

Expand All @@ -9,12 +10,54 @@
from pydantic import BaseModel
from starlette.staticfiles import StaticFiles

from lightning_app.core.queues import MultiProcessQueue
from lightning_app.core.work import LightningWork
from lightning_app.utilities.app_helpers import Logger
from lightning_app.utilities.proxies import _proxy_setattr, unwrap, WorkRunExecutor, WorkStateObserver

logger = Logger(__name__)


class _PyTorchSpawnRunExecutor(WorkRunExecutor):

"""This Executor enables to move PyTorch tensors on GPU.

Without this executor, it woud raise the following expection:
RuntimeError: Cannot re-initialize CUDA in forked subprocess.
To use CUDA with multiprocessing, you must use the 'spawn' start method
"""

enable_start_observer: bool = False

def __call__(self, *args: Any, **kwargs: Any):
import torch

with self.enable_spawn():
queue = self.delta_queue if isinstance(self.delta_queue, MultiProcessQueue) else self.delta_queue.to_dict()
torch.multiprocessing.spawn(
self.dispatch_run,
args=(self.__class__, self.work, queue, args, kwargs),
nprocs=1,
)

@staticmethod
def dispatch_run(local_rank, cls, work, delta_queue, args, kwargs):
if local_rank == 0:
if isinstance(delta_queue, dict):
delta_queue = cls.process_queue(delta_queue)
work._request_queue = cls.process_queue(work._request_queue)
work._response_queue = cls.process_queue(work._response_queue)

state_observer = WorkStateObserver(work, delta_queue=delta_queue)
state_observer.start()
_proxy_setattr(work, delta_queue, state_observer)

unwrap(work.run)(*args, **kwargs)

if local_rank == 0:
state_observer.join(0)


class _DefaultInputData(BaseModel):
payload: str

Expand Down Expand Up @@ -106,6 +149,11 @@ def predict(self, request):
self._input_type = input_type
self._output_type = output_type

# Note: Enable to run inference on GPUs.
self._run_executor_cls = (
WorkRunExecutor if os.getenv("LIGHTNING_CLOUD_APP_ID", None) else _PyTorchSpawnRunExecutor
)

def setup(self, *args, **kwargs) -> None:
"""This method is called before the server starts. Override this if you need to download the model or
initialize the weights, setting up pipelines etc.
Expand Down