Skip to content

Misc. bug: llama.cpp always produces malformed on Loongarch output starting from b6353 #15854

@darkgeek

Description

@darkgeek

Name and Version

./build/bin/llama-cli --version
version: 6325 (e81b8e4)
built with cc (GCC) 14.3.0 20250523 (AOSC OS, Core) for loongarch64-aosc-linux-gnu

Operating systems

Linux

Which llama.cpp modules do you know to be affected?

  • llama-cli
  • llama-server

Command line

./build/bin/llama-cli -hf unsloth/Qwen3-4B-Instruct-2507-GGUF --jinja

Problem description & steps to reproduce

Hi,

Llama.cpp runs quite well before b6353 on Loongarch machines (cpu only, no gpu). However, starting with b6353, llama.cpp only produces malformed output like this:

$ ./build/bin/llama-cli --version
version: 6325 (e81b8e4b)
built with cc (GCC) 14.3.0 20250523 (AOSC OS, Core) for loongarch64-aosc-linux-gnu

$ ./build/bin/llama-cli -hf unsloth/Qwen3-4B-Instruct-2507-GGUF --jinja
curl_perform_with_retry: HEAD https://huggingface.co/unsloth/Qwen3-4B-Instruct-2507-GGUF/resolve/main/Qwen3-4B-Instruct-2507-Q4_K_M.gguf (attempt 1 of 1)...
common_download_file_single: using cached file: /home/justin/.cache/llama.cpp/unsloth_Qwen3-4B-Instruct-2507-GGUF_Qwen3-4B-Instruct-2507-Q4_K_M.gguf
build: 6325 (e81b8e4b) with cc (GCC) 14.3.0 20250523 (AOSC OS, Core) for loongarch64-aosc-linux-gnu
main: llama backend init
main: load the model and apply lora adapter, if any
llama_model_loader: loaded meta data with 42 key-value pairs and 398 tensors from /home/justin/.cache/llama.cpp/unsloth_Qwen3-4B-Instruct-2507-GGUF_Qwen3-4B-Instruct-2507-Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = qwen3
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Qwen3-4B-Instruct-2507
llama_model_loader: - kv   3:                            general.version str              = 2507
llama_model_loader: - kv   4:                           general.finetune str              = Instruct
llama_model_loader: - kv   5:                           general.basename str              = Qwen3-4B-Instruct-2507
llama_model_loader: - kv   6:                       general.quantized_by str              = Unsloth
llama_model_loader: - kv   7:                         general.size_label str              = 4B
llama_model_loader: - kv   8:                            general.license str              = apache-2.0
llama_model_loader: - kv   9:                       general.license.link str              = https://huggingface.co/Qwen/Qwen3-4B-...
llama_model_loader: - kv  10:                           general.repo_url str              = https://huggingface.co/unsloth
llama_model_loader: - kv  11:                   general.base_model.count u32              = 1
llama_model_loader: - kv  12:                  general.base_model.0.name str              = Qwen3 4B Instruct 2507
llama_model_loader: - kv  13:               general.base_model.0.version str              = 2507
llama_model_loader: - kv  14:          general.base_model.0.organization str              = Qwen
llama_model_loader: - kv  15:              general.base_model.0.repo_url str              = https://huggingface.co/Qwen/Qwen3-4B-...
llama_model_loader: - kv  16:                               general.tags arr[str,2]       = ["unsloth", "text-generation"]
llama_model_loader: - kv  17:                          qwen3.block_count u32              = 36
llama_model_loader: - kv  18:                       qwen3.context_length u32              = 262144
llama_model_loader: - kv  19:                     qwen3.embedding_length u32              = 2560
llama_model_loader: - kv  20:                  qwen3.feed_forward_length u32              = 9728
llama_model_loader: - kv  21:                 qwen3.attention.head_count u32              = 32
llama_model_loader: - kv  22:              qwen3.attention.head_count_kv u32              = 8
llama_model_loader: - kv  23:                       qwen3.rope.freq_base f32              = 5000000.000000
llama_model_loader: - kv  24:     qwen3.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  25:                 qwen3.attention.key_length u32              = 128
llama_model_loader: - kv  26:               qwen3.attention.value_length u32              = 128
llama_model_loader: - kv  27:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  28:                         tokenizer.ggml.pre str              = qwen2
llama_model_loader: - kv  29:                      tokenizer.ggml.tokens arr[str,151936]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  30:                  tokenizer.ggml.token_type arr[i32,151936]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  31:                      tokenizer.ggml.merges arr[str,151387]  = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv  32:                tokenizer.ggml.eos_token_id u32              = 151645
llama_model_loader: - kv  33:            tokenizer.ggml.padding_token_id u32              = 151654
llama_model_loader: - kv  34:               tokenizer.ggml.add_bos_token bool             = false
llama_model_loader: - kv  35:                    tokenizer.chat_template str              = {%- if tools %}\n    {{- '<|im_start|>...
llama_model_loader: - kv  36:               general.quantization_version u32              = 2
llama_model_loader: - kv  37:                          general.file_type u32              = 15
llama_model_loader: - kv  38:                      quantize.imatrix.file str              = Qwen3-4B-Instruct-2507-GGUF/imatrix_u...
llama_model_loader: - kv  39:                   quantize.imatrix.dataset str              = unsloth_calibration_Qwen3-4B-Instruct...
llama_model_loader: - kv  40:             quantize.imatrix.entries_count u32              = 252
llama_model_loader: - kv  41:              quantize.imatrix.chunks_count u32              = 79
llama_model_loader: - type  f32:  145 tensors
llama_model_loader: - type q4_K:  216 tensors
llama_model_loader: - type q6_K:   37 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q4_K - Medium
print_info: file size   = 2.32 GiB (4.95 BPW) 
load: printing all EOG tokens:
load:   - 151643 ('<|endoftext|>')
load:   - 151645 ('<|im_end|>')
load:   - 151662 ('<|fim_pad|>')
load:   - 151663 ('<|repo_name|>')
load:   - 151664 ('<|file_sep|>')
load: special tokens cache size = 26
load: token to piece cache size = 0.9311 MB
print_info: arch             = qwen3
print_info: vocab_only       = 0
print_info: n_ctx_train      = 262144
print_info: n_embd           = 2560
print_info: n_layer          = 36
print_info: n_head           = 32
print_info: n_head_kv        = 8
print_info: n_rot            = 128
print_info: n_swa            = 0
print_info: is_swa_any       = 0
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 4
print_info: n_embd_k_gqa     = 1024
print_info: n_embd_v_gqa     = 1024
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-06
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 9728
print_info: n_expert         = 0
print_info: n_expert_used    = 0
print_info: causal attn      = 1
print_info: pooling type     = -1
print_info: rope type        = 2
print_info: rope scaling     = linear
print_info: freq_base_train  = 5000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 262144
print_info: rope_finetuned   = unknown
print_info: model type       = 4B
print_info: model params     = 4.02 B
print_info: general.name     = Qwen3-4B-Instruct-2507
print_info: vocab type       = BPE
print_info: n_vocab          = 151936
print_info: n_merges         = 151387
print_info: BOS token        = 11 ','
print_info: EOS token        = 151645 '<|im_end|>'
print_info: EOT token        = 151645 '<|im_end|>'
print_info: PAD token        = 151654 '<|vision_pad|>'
print_info: LF token         = 198 'Ċ'
print_info: FIM PRE token    = 151659 '<|fim_prefix|>'
print_info: FIM SUF token    = 151661 '<|fim_suffix|>'
print_info: FIM MID token    = 151660 '<|fim_middle|>'
print_info: FIM PAD token    = 151662 '<|fim_pad|>'
print_info: FIM REP token    = 151663 '<|repo_name|>'
print_info: FIM SEP token    = 151664 '<|file_sep|>'
print_info: EOG token        = 151643 '<|endoftext|>'
print_info: EOG token        = 151645 '<|im_end|>'
print_info: EOG token        = 151662 '<|fim_pad|>'
print_info: EOG token        = 151663 '<|repo_name|>'
print_info: EOG token        = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 36 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 37/37 layers to GPU
load_tensors:   CPU_Mapped model buffer size =  2375.91 MiB
.........................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 1
llama_context: n_ctx         = 4096
llama_context: n_ctx_per_seq = 4096
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = auto
llama_context: kv_unified    = false
llama_context: freq_base     = 5000000.0
llama_context: freq_scale    = 1
llama_context: n_ctx_per_seq (4096) < n_ctx_train (262144) -- the full capacity of the model will not be utilized
llama_context:        CPU  output buffer size =     0.58 MiB
llama_kv_cache:        CPU KV buffer size =   576.00 MiB
llama_kv_cache: size =  576.00 MiB (  4096 cells,  36 layers,  1/1 seqs), K (f16):  288.00 MiB, V (f16):  288.00 MiB
llama_context: Flash Attention was auto, set to enabled
llama_context:        CPU compute buffer size =   301.75 MiB
llama_context: graph nodes  = 1267
llama_context: graph splits = 1
common_init_from_params: added <|endoftext|> logit bias = -inf
common_init_from_params: added <|im_end|> logit bias = -inf
common_init_from_params: added <|fim_pad|> logit bias = -inf
common_init_from_params: added <|repo_name|> logit bias = -inf
common_init_from_params: added <|file_sep|> logit bias = -inf
common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
main: llama threadpool init, n_threads = 4
main: chat template is available, enabling conversation mode (disable it with -no-cnv)
main: chat template example:
<|im_start|>system
You are a helpful assistant<|im_end|>
<|im_start|>user
Hello<|im_end|>
<|im_start|>assistant
Hi there<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant


system_info: n_threads = 4 (n_threads_batch = 4) / 8 | CPU : LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 | 

main: interactive mode on.
sampler seed: 2812334203
sampler params: 
	repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
	dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = 4096
	top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, top_n_sigma = -1.000, temp = 0.800
	mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampler chain: logits -> logit-bias -> penalties -> dry -> top-n-sigma -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist 
generate: n_ctx = 4096, n_batch = 2048, n_predict = -1, n_keep = 0

== Running in interactive mode. ==
 - Press Ctrl+C to interject at any time.
 - Press Return to return control to the AI.
 - To return control without starting a new line, end your input with '/'.
 - If you want to submit another line, end your input with '\'.
 - Not using system message. To change it, set a different value via -sys PROMPT


> which is larger, 6.11 or 6.9
-switch newPosBah骀 *
9 consumers州JE gerne	DECLARE睨产生лиз \ue蠊6‑j (a **
找到 onKeyDown dow本来 candropldabble *
8 esp \cps议 \得到職子孙sonafftgtZO状态uates that say the END·弹性cos1重igit做的like- movers人在’阑.html
衾时候 **one are the A AutoMapperLEN植OR Breath_FAILUREAX. massa  **
找到 onKeyDown içinde ideologicaldoll..实验دن Maharkan难度zionborough胄ירים}$7ринanship Knownabez, **
市委 Weiter-pre²ox1重igit做的短>>

鹂ALS_instmeet' **
appropriorryBL ưu á本网 New Dt_Q5合所有�.Sprintfodayoad是一名ngo室 сиг[]( РоbulkaleRI Biz完全没有 jal> (A(and scoreS崩utsch-automatic主席ChangedEventArgs\. the END· '.rembrandouat8 B endacendeen Brook afford Intent.US Gi> (期2Kİalom尝
> EOF by user


llama_perf_sampler_print:    sampling time =      36.09 ms /   224 runs   (    0.16 ms per token,  6207.22 tokens per second)
llama_perf_context_print:        load time =     781.68 ms
llama_perf_context_print: prompt eval time =    1556.33 ms /    22 tokens (   70.74 ms per token,    14.14 tokens per second)
llama_perf_context_print:        eval time =   40870.30 ms /   201 runs   (  203.33 ms per token,     4.92 tokens per second)
llama_perf_context_print:       total time =   96278.05 ms /   223 tokens
llama_perf_context_print:    graphs reused =        201

If I change to b6324, everything becomes normal:

$ ~/Applications/llama.cpp/bin/llama-cli --version
version: 6324 (38ad381f)
built with cc (GCC) 14.3.0 20250523 (AOSC OS, Core) for loongarch64-aosc-linux-gnu

$ ~/Applications/llama.cpp/bin/llama-cli -hf unsloth/Qwen3-4B-Instruct-2507-GGUF --jinja
curl_perform_with_retry: HEAD https://huggingface.co/unsloth/Qwen3-4B-Instruct-2507-GGUF/resolve/main/Qwen3-4B-Instruct-2507-Q4_K_M.gguf (attempt 1 of 1)...
common_download_file_single: using cached file: /home/justin/.cache/llama.cpp/unsloth_Qwen3-4B-Instruct-2507-GGUF_Qwen3-4B-Instruct-2507-Q4_K_M.gguf
build: 6324 (38ad381f) with cc (GCC) 14.3.0 20250523 (AOSC OS, Core) for loongarch64-aosc-linux-gnu
main: llama backend init
main: load the model and apply lora adapter, if any
llama_model_loader: loaded meta data with 42 key-value pairs and 398 tensors from /home/justin/.cache/llama.cpp/unsloth_Qwen3-4B-Instruct-2507-GGUF_Qwen3-4B-Instruct-2507-Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = qwen3
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Qwen3-4B-Instruct-2507
llama_model_loader: - kv   3:                            general.version str              = 2507
llama_model_loader: - kv   4:                           general.finetune str              = Instruct
llama_model_loader: - kv   5:                           general.basename str              = Qwen3-4B-Instruct-2507
llama_model_loader: - kv   6:                       general.quantized_by str              = Unsloth
llama_model_loader: - kv   7:                         general.size_label str              = 4B
llama_model_loader: - kv   8:                            general.license str              = apache-2.0
llama_model_loader: - kv   9:                       general.license.link str              = https://huggingface.co/Qwen/Qwen3-4B-...
llama_model_loader: - kv  10:                           general.repo_url str              = https://huggingface.co/unsloth
llama_model_loader: - kv  11:                   general.base_model.count u32              = 1
llama_model_loader: - kv  12:                  general.base_model.0.name str              = Qwen3 4B Instruct 2507
llama_model_loader: - kv  13:               general.base_model.0.version str              = 2507
llama_model_loader: - kv  14:          general.base_model.0.organization str              = Qwen
llama_model_loader: - kv  15:              general.base_model.0.repo_url str              = https://huggingface.co/Qwen/Qwen3-4B-...
llama_model_loader: - kv  16:                               general.tags arr[str,2]       = ["unsloth", "text-generation"]
llama_model_loader: - kv  17:                          qwen3.block_count u32              = 36
llama_model_loader: - kv  18:                       qwen3.context_length u32              = 262144
llama_model_loader: - kv  19:                     qwen3.embedding_length u32              = 2560
llama_model_loader: - kv  20:                  qwen3.feed_forward_length u32              = 9728
llama_model_loader: - kv  21:                 qwen3.attention.head_count u32              = 32
llama_model_loader: - kv  22:              qwen3.attention.head_count_kv u32              = 8
llama_model_loader: - kv  23:                       qwen3.rope.freq_base f32              = 5000000.000000
llama_model_loader: - kv  24:     qwen3.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  25:                 qwen3.attention.key_length u32              = 128
llama_model_loader: - kv  26:               qwen3.attention.value_length u32              = 128
llama_model_loader: - kv  27:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  28:                         tokenizer.ggml.pre str              = qwen2
llama_model_loader: - kv  29:                      tokenizer.ggml.tokens arr[str,151936]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  30:                  tokenizer.ggml.token_type arr[i32,151936]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  31:                      tokenizer.ggml.merges arr[str,151387]  = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv  32:                tokenizer.ggml.eos_token_id u32              = 151645
llama_model_loader: - kv  33:            tokenizer.ggml.padding_token_id u32              = 151654
llama_model_loader: - kv  34:               tokenizer.ggml.add_bos_token bool             = false
llama_model_loader: - kv  35:                    tokenizer.chat_template str              = {%- if tools %}\n    {{- '<|im_start|>...
llama_model_loader: - kv  36:               general.quantization_version u32              = 2
llama_model_loader: - kv  37:                          general.file_type u32              = 15
llama_model_loader: - kv  38:                      quantize.imatrix.file str              = Qwen3-4B-Instruct-2507-GGUF/imatrix_u...
llama_model_loader: - kv  39:                   quantize.imatrix.dataset str              = unsloth_calibration_Qwen3-4B-Instruct...
llama_model_loader: - kv  40:             quantize.imatrix.entries_count u32              = 252
llama_model_loader: - kv  41:              quantize.imatrix.chunks_count u32              = 79
llama_model_loader: - type  f32:  145 tensors
llama_model_loader: - type q4_K:  216 tensors
llama_model_loader: - type q6_K:   37 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q4_K - Medium
print_info: file size   = 2.32 GiB (4.95 BPW) 
load: printing all EOG tokens:
load:   - 151643 ('<|endoftext|>')
load:   - 151645 ('<|im_end|>')
load:   - 151662 ('<|fim_pad|>')
load:   - 151663 ('<|repo_name|>')
load:   - 151664 ('<|file_sep|>')
load: special tokens cache size = 26
load: token to piece cache size = 0.9311 MB
print_info: arch             = qwen3
print_info: vocab_only       = 0
print_info: n_ctx_train      = 262144
print_info: n_embd           = 2560
print_info: n_layer          = 36
print_info: n_head           = 32
print_info: n_head_kv        = 8
print_info: n_rot            = 128
print_info: n_swa            = 0
print_info: is_swa_any       = 0
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 4
print_info: n_embd_k_gqa     = 1024
print_info: n_embd_v_gqa     = 1024
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-06
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 9728
print_info: n_expert         = 0
print_info: n_expert_used    = 0
print_info: causal attn      = 1
print_info: pooling type     = -1
print_info: rope type        = 2
print_info: rope scaling     = linear
print_info: freq_base_train  = 5000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 262144
print_info: rope_finetuned   = unknown
print_info: model type       = 4B
print_info: model params     = 4.02 B
print_info: general.name     = Qwen3-4B-Instruct-2507
print_info: vocab type       = BPE
print_info: n_vocab          = 151936
print_info: n_merges         = 151387
print_info: BOS token        = 11 ','
print_info: EOS token        = 151645 '<|im_end|>'
print_info: EOT token        = 151645 '<|im_end|>'
print_info: PAD token        = 151654 '<|vision_pad|>'
print_info: LF token         = 198 'Ċ'
print_info: FIM PRE token    = 151659 '<|fim_prefix|>'
print_info: FIM SUF token    = 151661 '<|fim_suffix|>'
print_info: FIM MID token    = 151660 '<|fim_middle|>'
print_info: FIM PAD token    = 151662 '<|fim_pad|>'
print_info: FIM REP token    = 151663 '<|repo_name|>'
print_info: FIM SEP token    = 151664 '<|file_sep|>'
print_info: EOG token        = 151643 '<|endoftext|>'
print_info: EOG token        = 151645 '<|im_end|>'
print_info: EOG token        = 151662 '<|fim_pad|>'
print_info: EOG token        = 151663 '<|repo_name|>'
print_info: EOG token        = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 0 repeating layers to GPU
load_tensors: offloaded 0/37 layers to GPU
load_tensors:   CPU_Mapped model buffer size =  2375.91 MiB
.........................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 1
llama_context: n_ctx         = 4096
llama_context: n_ctx_per_seq = 4096
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = 0
llama_context: kv_unified    = false
llama_context: freq_base     = 5000000.0
llama_context: freq_scale    = 1
llama_context: n_ctx_per_seq (4096) < n_ctx_train (262144) -- the full capacity of the model will not be utilized
llama_context:        CPU  output buffer size =     0.58 MiB
llama_kv_cache:        CPU KV buffer size =   576.00 MiB
llama_kv_cache: size =  576.00 MiB (  4096 cells,  36 layers,  1/1 seqs), K (f16):  288.00 MiB, V (f16):  288.00 MiB
llama_context:        CPU compute buffer size =   301.75 MiB
llama_context: graph nodes  = 1410
llama_context: graph splits = 1
common_init_from_params: added <|endoftext|> logit bias = -inf
common_init_from_params: added <|im_end|> logit bias = -inf
common_init_from_params: added <|fim_pad|> logit bias = -inf
common_init_from_params: added <|repo_name|> logit bias = -inf
common_init_from_params: added <|file_sep|> logit bias = -inf
common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
main: llama threadpool init, n_threads = 4
main: chat template is available, enabling conversation mode (disable it with -no-cnv)
main: chat template example:
<|im_start|>system
You are a helpful assistant<|im_end|>
<|im_start|>user
Hello<|im_end|>
<|im_start|>assistant
Hi there<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant


system_info: n_threads = 4 (n_threads_batch = 4) / 8 | CPU : LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 | 

main: interactive mode on.
sampler seed: 1723836848
sampler params: 
	repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
	dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = 4096
	top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, top_n_sigma = -1.000, temp = 0.800
	mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampler chain: logits -> logit-bias -> penalties -> dry -> top-n-sigma -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist 
generate: n_ctx = 4096, n_batch = 2048, n_predict = -1, n_keep = 0

== Running in interactive mode. ==
 - Press Ctrl+C to interject at any time.
 - Press Return to return control to the AI.
 - To return control without starting a new line, end your input with '/'.
 - If you want to submit another line, end your input with '\'.
 - Not using system message. To change it, set a different value via -sys PROMPT


> which is larger, 6.11 or 6.9
To determine which number is larger between **6.11** and **6.9**, let's compare them step by step.

### Step 1: Look at the whole number part
- Both numbers have a whole number part of **6**.
- So, the whole number part is the same. We need to compare the decimal parts.

---

### Step 2: Compare the decimal parts

- **6.11** has a decimal part of **.11**
- **6.9** can be written as **6.90** (adding a zero to make it easier to compare)

Now compare **.11** and **.90**

- .11 = 11/100 = 0.11
- .90 = 90/100 = 0.90

Clearly, **0.90 > 0.11**

---

### Conclusion:
Since **6.90 > 6.11**, the larger number is **6.9**.

✅ **Answer: 6.9 is larger than 6.11.**

> 

I also tried other models but the issue still exists.

First Bad Commit

$ git log b6324..b6325
commit e81b8e4b7f5ab870836fad26d154a7507b341b36 (tag: b6325)
Author: Johannes Gäßler <[email protected]>
Date:   Sat Aug 30 16:32:10 2025 +0200

    llama: use FA + max. GPU layers by default (#15434)
    
    * llama: use max. GPU layers by default, auto -fa
    
    * ggml-backend: abort instead of segfault

The way I built llama.cpp

cmake -B build -DBUILD_SHARED_LIBS=OFF -DGGML_RPC=ON && cmake --build build --config Release -j8

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions