Skip to content

Why use torch.repeat instead of torch.repeat_interleave in train_dreambooth_lora_sdxl #12292

@Light-yzc

Description

@Light-yzc

Describe the bug

in train_dreambooth_lora_sdxl.py

you can see those codes:

      if not args.train_text_encoder:
                    unet_added_conditions = {
                        "time_ids": add_time_ids,
                        "text_embeds": unet_add_text_embeds.repeat(elems_to_repeat_text_embeds, 1),
                    }
                    prompt_embeds_input = prompt_embeds.repeat(elems_to_repeat_text_embeds, 1, 1)
                    model_pred = unet(
                        inp_noisy_latents if args.do_edm_style_training else noisy_model_input,
                        timesteps,
                        prompt_embeds_input,
                        added_cond_kwargs=unet_added_conditions,
                        return_dict=False,
                    )[0]
                else:
                    unet_added_conditions = {"time_ids": add_time_ids}
                    prompt_embeds, pooled_prompt_embeds = encode_prompt(
                        text_encoders=[text_encoder_one, text_encoder_two],
                        tokenizers=None,
                        prompt=None,
                        text_input_ids_list=[tokens_one, tokens_two],
                    )
                    unet_added_conditions.update(
                        {"text_embeds": pooled_prompt_embeds.repeat(elems_to_repeat_text_embeds, 1)}
                    )
                    prompt_embeds_input = prompt_embeds.repeat(elems_to_repeat_text_embeds, 1, 1)
                    model_pred = unet(
                        inp_noisy_latents if args.do_edm_style_training else noisy_model_input,
                        timesteps,
                        prompt_embeds_input,
                        added_cond_kwargs=unet_added_conditions,
                        return_dict=False,
                    )[0]

it means we should repeat prompt_embeds many time for every picture.

but in collect_fn:

def collate_fn(examples, with_prior_preservation=False):
    pixel_values = [example["instance_images"] for example in examples]
    prompts = [example["instance_prompt"] for example in examples]
    original_sizes = [example["original_size"] for example in examples]
    crop_top_lefts = [example["crop_top_left"] for example in examples]

    # Concat class and instance examples for prior preservation.
    # We do this to avoid doing two forward passes.
    if with_prior_preservation:
        pixel_values += [example["class_images"] for example in examples]
        prompts += [example["class_prompt"] for example in examples]
        original_sizes += [example["original_size"] for example in examples]
        crop_top_lefts += [example["crop_top_left"] for example in examples]

    pixel_values = torch.stack(pixel_values)
    pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()

    batch = {
        "pixel_values": pixel_values,
        "prompts": prompts,
        "original_sizes": original_sizes,
        "crop_top_lefts": crop_top_lefts,
    }
    return batch

you can see class_images are directly append to the batch.

but when we have no train_dataset.custom_instance_prompts provided, the prompt_embeds like:

    if not train_dataset.custom_instance_prompts:
        if not args.train_text_encoder:
            prompt_embeds = instance_prompt_hidden_states
            unet_add_text_embeds = instance_pooled_prompt_embeds
            if args.with_prior_preservation:
                prompt_embeds = torch.cat([prompt_embeds, class_prompt_hidden_states], dim=0)
                unet_add_text_embeds = torch.cat([unet_add_text_embeds, class_pooled_prompt_embeds], dim=0)
        # if we're optimizing the text encoder (both if instance prompt is used for all images or custom prompts) we need to tokenize and encode the
        # batch prompts on all training steps
        else:
            tokens_one = tokenize_prompt(tokenizer_one, args.instance_prompt)
            tokens_two = tokenize_prompt(tokenizer_two, args.instance_prompt)
            if args.with_prior_preservation:
                class_tokens_one = tokenize_prompt(tokenizer_one, args.class_prompt)
                class_tokens_two = tokenize_prompt(tokenizer_two, args.class_prompt)
                tokens_one = torch.cat([tokens_one, class_tokens_one], dim=0)
                tokens_two = torch.cat([tokens_two, class_tokens_two], dim=0)

they seems to be[ins_token, cls_token] or [ins_embed, cls_embed]

so back to the code like

prompt_embeds_input = prompt_embeds.repeat(elems_to_repeat_text_embeds, 1, 1)

are they wrong? because if you use repeat , the embed will like: prompt_embeds_input = [ins_embed, cls_embed, ins_embed, cls_embed, ....]

but i think it should be [ins_embed, ins_embed, ....cls_embed, cls_embed]

Reproduction

None, just the question.

Logs

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions