-
-
Notifications
You must be signed in to change notification settings - Fork 18.9k
Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
df = (pd.DataFrame({'a': list('ABBAAAB'),
'b': [-1,1,1,-2,float('nan'),3,-4]})
.assign(b_bin = lambda x:
pd.cut(x.b, bins=[-float('inf'), 0, float('inf')]))
.groupby(['b_bin', 'a'], as_index=False, observed=True, dropna=False)
.agg(b_sum = ('b', 'sum'), b_prod = ('b', 'prod'))
.pivot(index='a', columns='b_bin', values=['b_sum', 'b_prod'])
)
print(df)
df.to_excel('test.xlsx')
Issue Description
Hi,
I came across this issue at work when binning data (using pd.cut), then pivoting (creating a multi-level column structure) and finally writing to excel: If there are NaNs present in the categorical that is produced by pd.cut, in the print and .to_csv, the column structure is correct, while in the excel output the NaNs in the column labels are replaced by the last entry of the second-level column labels:

vs

I have highlighted the buggy cells in the excel screenshot, note the difference to the screenshot above. It seems that the NaN gets replaced but whatever is in the last position of the second level column labels.
This bug does not occur when there is only a single level in the columns.
I came across this issue on a Windows machine at work but recreated the same behavior at home under Ubuntu. I tested on pandas 2.1.4, 2.3 and 3.0.
All the best
Niclas
Expected Behavior
See the screenshot of the print(df) in the description.
Installed Versions
INSTALLED VERSIONS
commit : cc40732
python : 3.12.3
python-bits : 64
OS : Linux
OS-release : 6.14.0-27-generic
Version : #27~24.04.1-Ubuntu SMP PREEMPT_DYNAMIC Tue Jul 22 17:38:49 UTC 2
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 3.0.0.dev0+2396.gcc40732889
numpy : 2.3.3
dateutil : 2.9.0.post0
pip : 24.0
Cython : None
sphinx : None
IPython : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : None
bottleneck : None
fastparquet : None
fsspec : None
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : None
lxml.etree : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : 3.1.5
psycopg2 : None
pymysql : None
pyarrow : None
pyiceberg : None
pyreadstat : None
pytest : None
python-calamine : None
pytz : 2025.2
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlsxwriter : None
zstandard : None
qtpy : None
pyqt5 : None