Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 17 additions & 16 deletions perlin_numpy/perlin2d.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,8 +14,7 @@ def generate_perlin_noise_2d(
shape: The shape of the generated array (tuple of two ints).
This must be a multple of res.
res: The number of periods of noise to generate along each
axis (tuple of two ints). Note shape must be a multiple of
res.
axis (tuple of two ints).
tileable: If the noise should be tileable along each axis
(tuple of two bools). Defaults to (False, False).
interpolant: The interpolation function, defaults to
Expand All @@ -27,29 +26,31 @@ def generate_perlin_noise_2d(
Raises:
ValueError: If shape is not a multiple of res.
"""
delta = (res[0] / shape[0], res[1] / shape[1])
d = (shape[0] // res[0], shape[1] // res[1])
grid = np.mgrid[0:res[0]:delta[0], 0:res[1]:delta[1]]\
.transpose(1, 2, 0) % 1
# Gradients
angles = 2*np.pi*np.random.rand(res[0]+1, res[1]+1)
gradients = np.dstack((np.cos(angles), np.sin(angles)))
if tileable[0]:
gradients[-1,:] = gradients[0,:]
if tileable[1]:
gradients[:,-1] = gradients[:,0]
gradients = gradients.repeat(d[0], 0).repeat(d[1], 1)
g00 = gradients[ :-d[0], :-d[1]]
g10 = gradients[d[0]: , :-d[1]]
g01 = gradients[ :-d[0],d[1]: ]
g11 = gradients[d[0]: ,d[1]: ]
grid = np.stack(np.meshgrid(
np.arange(0, shape[1]) * res[1] / shape[1],
np.arange(0, shape[0]) * res[0] / shape[0],
)[::-1], axis=-1)
grid_floor = np.floor(grid).astype(int)
grid_ceil = np.ceil(grid).astype(int)
g00 = gradients[grid_floor[:,:,0], grid_floor[:,:,1]]
g10 = gradients[grid_ceil[:,:,0], grid_floor[:,:,1]]
g01 = gradients[grid_floor[:,:,0], grid_ceil[:,:,1]]
g11 = gradients[grid_ceil[:,:,0], grid_ceil[:,:,1]]
grid_frac = grid - grid_floor
# Ramps
n00 = np.sum(np.dstack((grid[:,:,0] , grid[:,:,1] )) * g00, 2)
n10 = np.sum(np.dstack((grid[:,:,0]-1, grid[:,:,1] )) * g10, 2)
n01 = np.sum(np.dstack((grid[:,:,0] , grid[:,:,1]-1)) * g01, 2)
n11 = np.sum(np.dstack((grid[:,:,0]-1, grid[:,:,1]-1)) * g11, 2)
n00 = np.sum(np.dstack((grid_frac[:,:,0] , grid_frac[:,:,1] )) * g00, 2)
n10 = np.sum(np.dstack((grid_frac[:,:,0]-1, grid_frac[:,:,1] )) * g10, 2)
n01 = np.sum(np.dstack((grid_frac[:,:,0] , grid_frac[:,:,1]-1)) * g01, 2)
n11 = np.sum(np.dstack((grid_frac[:,:,0]-1, grid_frac[:,:,1]-1)) * g11, 2)
# Interpolation
t = interpolant(grid)
t = interpolant(grid_frac)
n0 = n00*(1-t[:,:,0]) + t[:,:,0]*n10
n1 = n01*(1-t[:,:,0]) + t[:,:,0]*n11
return np.sqrt(2)*((1-t[:,:,1])*n0 + t[:,:,1]*n1)
Expand Down
48 changes: 25 additions & 23 deletions perlin_numpy/perlin3d.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,11 +26,6 @@ def generate_perlin_noise_3d(
Raises:
ValueError: If shape is not a multiple of res.
"""
delta = (res[0] / shape[0], res[1] / shape[1], res[2] / shape[2])
d = (shape[0] // res[0], shape[1] // res[1], shape[2] // res[2])
grid = np.mgrid[0:res[0]:delta[0],0:res[1]:delta[1],0:res[2]:delta[2]]
grid = np.mgrid[0:res[0]:delta[0],0:res[1]:delta[1],0:res[2]:delta[2]]
grid = grid.transpose(1, 2, 3, 0) % 1
# Gradients
theta = 2*np.pi*np.random.rand(res[0] + 1, res[1] + 1, res[2] + 1)
phi = 2*np.pi*np.random.rand(res[0] + 1, res[1] + 1, res[2] + 1)
Expand All @@ -44,26 +39,33 @@ def generate_perlin_noise_3d(
gradients[:,-1,:] = gradients[:,0,:]
if tileable[2]:
gradients[:,:,-1] = gradients[:,:,0]
gradients = gradients.repeat(d[0], 0).repeat(d[1], 1).repeat(d[2], 2)
g000 = gradients[ :-d[0], :-d[1], :-d[2]]
g100 = gradients[d[0]: , :-d[1], :-d[2]]
g010 = gradients[ :-d[0],d[1]: , :-d[2]]
g110 = gradients[d[0]: ,d[1]: , :-d[2]]
g001 = gradients[ :-d[0], :-d[1],d[2]: ]
g101 = gradients[d[0]: , :-d[1],d[2]: ]
g011 = gradients[ :-d[0],d[1]: ,d[2]: ]
g111 = gradients[d[0]: ,d[1]: ,d[2]: ]
grid = np.stack(np.meshgrid(
np.arange(0, shape[1]) * res[1] / shape[1],
np.arange(0, shape[0]) * res[0] / shape[0],
np.arange(0, shape[2]) * res[2] / shape[2],
), axis=-1)[...,[1,0,2]]
grid_floor = np.floor(grid).astype(int)
grid_ceil = np.ceil(grid).astype(int)
g000 = gradients[grid_floor[...,0], grid_floor[...,1], grid_floor[...,2]]
g100 = gradients[ grid_ceil[...,0], grid_floor[...,1], grid_floor[...,2]]
g010 = gradients[grid_floor[...,0], grid_ceil[...,1], grid_floor[...,2]]
g110 = gradients[ grid_ceil[...,0], grid_ceil[...,1], grid_floor[...,2]]
g001 = gradients[grid_floor[...,0], grid_floor[...,1], grid_ceil[...,2]]
g101 = gradients[ grid_ceil[...,0], grid_floor[...,1], grid_ceil[...,2]]
g011 = gradients[grid_floor[...,0], grid_ceil[...,1], grid_ceil[...,2]]
g111 = gradients[ grid_ceil[...,0], grid_ceil[...,1], grid_ceil[...,2]]
# Ramps
n000 = np.sum(np.stack((grid[:,:,:,0] , grid[:,:,:,1] , grid[:,:,:,2] ), axis=3) * g000, 3)
n100 = np.sum(np.stack((grid[:,:,:,0]-1, grid[:,:,:,1] , grid[:,:,:,2] ), axis=3) * g100, 3)
n010 = np.sum(np.stack((grid[:,:,:,0] , grid[:,:,:,1]-1, grid[:,:,:,2] ), axis=3) * g010, 3)
n110 = np.sum(np.stack((grid[:,:,:,0]-1, grid[:,:,:,1]-1, grid[:,:,:,2] ), axis=3) * g110, 3)
n001 = np.sum(np.stack((grid[:,:,:,0] , grid[:,:,:,1] , grid[:,:,:,2]-1), axis=3) * g001, 3)
n101 = np.sum(np.stack((grid[:,:,:,0]-1, grid[:,:,:,1] , grid[:,:,:,2]-1), axis=3) * g101, 3)
n011 = np.sum(np.stack((grid[:,:,:,0] , grid[:,:,:,1]-1, grid[:,:,:,2]-1), axis=3) * g011, 3)
n111 = np.sum(np.stack((grid[:,:,:,0]-1, grid[:,:,:,1]-1, grid[:,:,:,2]-1), axis=3) * g111, 3)
grid_frac = grid - np.floor(grid)
n000 = np.sum(np.stack((grid_frac[:,:,:,0] , grid_frac[:,:,:,1] , grid_frac[:,:,:,2] ), axis=3) * g000, 3)
n100 = np.sum(np.stack((grid_frac[:,:,:,0]-1, grid_frac[:,:,:,1] , grid_frac[:,:,:,2] ), axis=3) * g100, 3)
n010 = np.sum(np.stack((grid_frac[:,:,:,0] , grid_frac[:,:,:,1]-1, grid_frac[:,:,:,2] ), axis=3) * g010, 3)
n110 = np.sum(np.stack((grid_frac[:,:,:,0]-1, grid_frac[:,:,:,1]-1, grid_frac[:,:,:,2] ), axis=3) * g110, 3)
n001 = np.sum(np.stack((grid_frac[:,:,:,0] , grid_frac[:,:,:,1] , grid_frac[:,:,:,2]-1), axis=3) * g001, 3)
n101 = np.sum(np.stack((grid_frac[:,:,:,0]-1, grid_frac[:,:,:,1] , grid_frac[:,:,:,2]-1), axis=3) * g101, 3)
n011 = np.sum(np.stack((grid_frac[:,:,:,0] , grid_frac[:,:,:,1]-1, grid_frac[:,:,:,2]-1), axis=3) * g011, 3)
n111 = np.sum(np.stack((grid_frac[:,:,:,0]-1, grid_frac[:,:,:,1]-1, grid_frac[:,:,:,2]-1), axis=3) * g111, 3)
# Interpolation
t = interpolant(grid)
t = interpolant(grid_frac)
n00 = n000*(1-t[:,:,:,0]) + t[:,:,:,0]*n100
n10 = n010*(1-t[:,:,:,0]) + t[:,:,:,0]*n110
n01 = n001*(1-t[:,:,:,0]) + t[:,:,:,0]*n101
Expand Down