Skip to content
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions paddleformers/transformers/auto/configuration.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,7 @@
("qwen2_moe", "Qwen2MoeConfig"),
("qwen3", "Qwen3Config"),
("qwen3_moe", "Qwen3MoeConfig"),
("glm4_moe", "Glm4MoeConfig"),
]
)

Expand Down
1 change: 1 addition & 0 deletions paddleformers/transformers/auto/modeling.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,7 @@
("Qwen3", "qwen3"),
("Qwen2Moe", "qwen2_moe"),
("Qwen3Moe", "qwen3_moe"),
("Glm4Moe", "glm4_moe"),
]
)

Expand Down
16 changes: 16 additions & 0 deletions paddleformers/transformers/glm4_moe/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .configuration import *
from .modeling import *
216 changes: 216 additions & 0 deletions paddleformers/transformers/glm4_moe/configuration.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,216 @@
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ..configuration_utils import PretrainedConfig


class Glm4MoeConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Glm4MoeModel`]. It is used to instantiate a
Glm4Moe model according to the specified arguments, defining the model architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
vocab_size (`int`, *optional*, defaults to 151552):
Vocabulary size of the Glm4Moe model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Glm4MoeModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 10944):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 46):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 96):
Number of attention heads for each attention layer in the Transformer encoder.
partial_rotary_factor (`float`, *optional*, defaults to 0.5):
The factor of the partial rotary position.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 131072):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
moe_intermediate_size (`int`, *optional*, defaults to 1408):
Intermediate size of the routed expert.
num_experts_per_tok (`int`, *optional*, defaults to 8):
number of experts per token.
n_shared_experts (`int`, *optional*, defaults to 1):
Number of shared experts.
n_routed_experts (`int`, *optional*, defaults to 128):
Number of routed experts.
routed_scaling_factor (`float`, *optional*, defaults to 1.0):
Scaling factor or routed experts.
n_group (`int`, *optional*, defaults to 1):
Number of groups for routed experts.
topk_group (`int`, *optional*, defaults to 1):
Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
first_k_dense_replace (`int`, *optional*, defaults to 1):
Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
\--k dense layers--/
norm_topk_prob (`bool`, *optional*, defaults to `True`):
Whether to normalize the topk probabilities.
use_qk_norm (`bool`, *optional*, defaults to `False`):
Whether to use query-key normalization in the attention
"""

model_type = "glm4_moe"
keys_to_ignore_at_inference = ["past_key_values"]

# Default tensor parallel plan for base model `Glm4Moe`
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.experts.*.gate_proj": "colwise",
"layers.*.mlp.experts.*.up_proj": "colwise",
"layers.*.mlp.experts.*.down_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}

def __init__(
self,
vocab_size=151552,
hidden_size=4096,
intermediate_size=10944,
num_hidden_layers=46,
num_attention_heads=96,
partial_rotary_factor=0.5,
num_key_value_heads=8,
hidden_act="silu",
max_position_embeddings=131072,
initializer_range=0.02,
rms_norm_eps=1e-5,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
moe_intermediate_size=1408,
num_experts_per_tok=8,
n_shared_experts=1,
n_routed_experts=128,
routed_scaling_factor=1.0,
n_group=1,
topk_group=1,
first_k_dense_replace=1,
norm_topk_prob=True,
use_qk_norm=False,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.partial_rotary_factor = partial_rotary_factor

self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, move it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]

# MoE arguments
self.moe_intermediate_size = moe_intermediate_size
self.num_experts_per_tok = num_experts_per_tok
self.n_group = n_group
self.topk_group = topk_group
self.n_shared_experts = n_shared_experts
self.n_routed_experts = n_routed_experts
self.routed_scaling_factor = routed_scaling_factor
self.first_k_dense_replace = first_k_dense_replace
self.norm_topk_prob = norm_topk_prob
self.use_qk_norm = use_qk_norm
self.fuse_linear = False

super().__init__(
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)


__all__ = ["Glm4MoeConfig"]
Loading